This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214343 #16 Jul 15 2012 12:50:55 %S A214343 2,3,6,15,77,726,6318,189375,755968,871593371,33714015615 %N A214343 a(n) is the smallest integer j such that the numbers of prime factors (counting multiplicity) in j, j+1, ... , j+n-1 are the full set {1,2,...,n}. %C A214343 Next term a(10) > 5*10^7. _Joerg Arndt_, Jul 14 2012 %e A214343 a(4)=15 because 15 has two prime factors, 16 has four, 17 has one and 18 has three (and 15 is the smallest number with this property). %e A214343 a(5) = 77 because 77, 78, 79, 80 and 81 have 2, 3, 1, 5 and 4 prime factors. %p A214343 A214343 := proc(n) %p A214343 refs := {seq(i,i=1..n)} ; %p A214343 for j from 1 do %p A214343 pf := {} ; %p A214343 for k from 0 to n-1 do %p A214343 pf := pf union {numtheory[bigomega](j+k)} ; %p A214343 if nops(pf) < k+1 then %p A214343 break; %p A214343 end if; %p A214343 end do: %p A214343 if pf = refs then %p A214343 return j; %p A214343 end if; %p A214343 end do: %p A214343 end proc: # _R. J. Mathar_, Jul 13 2012 %t A214343 f[n_] := f[n] = FactorInteger[n][[All, 2]] // Total; %t A214343 n = 1; %t A214343 i = 2; %t A214343 While[True, %t A214343 While[Union[Table[f[j], {j, i, i + n - 1}]] != Range[n], %t A214343 i += 1; f[i] =. %t A214343 ]; %t A214343 Print[i]; n += 1; %t A214343 ]; %Y A214343 Cf. A072875, A001222. %K A214343 nonn %O A214343 1,1 %A A214343 _Jake Foster_, Jul 13 2012 %E A214343 a(10)-a(11) from _Donovan Johnson_, Jul 15 2012