cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214353 Number of 3 X 3 X 3 triangular 0..n arrays with no element lying outside the (possibly reversed) range delimited by its sw and se neighbors.

Original entry on oeis.org

26, 169, 660, 1951, 4822, 10507, 20840, 38421, 66802, 110693, 176188, 271011, 404782, 589303, 838864, 1170569, 1604682, 2164993, 2879204, 3779335, 4902150, 6289603, 7989304, 10055005, 12547106, 15533181, 19088524, 23296715, 28250206
Offset: 1

Views

Author

R. H. Hardin, Jul 13 2012

Keywords

Comments

Row 3 of A214352.

Examples

			Some solutions for n=3:
....1......1......2......1......2......1......3......2......3......2......0
...2.0....1.1....2.1....1.1....2.2....1.2....3.1....0.3....0.3....1.3....1.0
..3.2.0..0.3.1..3.1.3..0.3.0..2.2.0..2.1.2..3.1.0..0.3.2..0.1.3..1.2.3..3.1.0
		

Crossrefs

Cf. A214352.

Formula

Empirical: a(n) = (1/36)*n^6 + (7/15)*n^5 + (25/9)*n^4 + (15/2)*n^3 + (331/36)*n^2 + (151/30)*n + 1.
Conjectures from Colin Barker, Jul 22 2018: (Start)
G.f.: x*(26 - 13*x + 23*x^2 - 30*x^3 + 20*x^4 - 7*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)