A214373 Irregular array T(n,k) of the numbers of non-extendable (complete) non-self-adjacent simple paths ending at each of a minimal subset of nodes within a square lattice bounded by rectangles with nodal dimensions n and 7, n >= 2.
52, 0, 0, 0, 353, 57, 62, 60, 10, 0, 0, 0, 1931, 495, 622, 602, 200, 56, 262, 364, 12027, 3522, 4399, 4170, 2143, 640, 1941, 2394, 2612, 954, 3956, 5136, 76933, 21068, 26181, 25090, 17601, 3675, 9258, 10048, 20009, 7213, 26414, 32132
Offset: 2
Examples
When n = 2, the number of times (NT) each node in the rectangle is the end node (EN) of a complete non-self-adjacent simple path is EN 0 1 2 3 4 5 6 7 8 9 10 11 12 13 NT 52 0 0 0 0 0 52 52 0 0 0 0 0 52 To limit duplication, only the top left-hand corner 52 and the three zeros to its right are stored in the sequence, i.e. T(2,1) = 31, T(2,2) = 0, T(2,3) = 0 and T(2,4) = 0.
Links
- C. H. Gribble, Computed characteristics of complete non-self-adjacent paths in a square lattice bounded by various sizes of rectangle.
- C. H. Gribble, Computes characteristics of complete non-self-adjacent paths in square and cubic lattices bounded by various sizes of rectangle and rectangular cuboid respectively.
Extensions
Comment corrected by Christopher Hunt Gribble, Jul 22 2012
Comments