cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214393 Numbers of the form (4k+3)^2+4 or (4k+5)^2-8.

Original entry on oeis.org

13, 17, 53, 73, 125, 161, 229, 281, 365, 433, 533, 617, 733, 833, 965, 1081, 1229, 1361, 1525, 1673, 1853, 2017, 2213, 2393, 2605, 2801, 3029, 3241, 3485, 3713, 3973, 4217, 4493, 4753, 5045, 5321, 5629, 5921, 6245, 6553, 6893, 7217, 7573, 7913, 8285, 8641
Offset: 0

Views

Author

Keywords

Comments

For every n=2k the triple (a(2k-1)^2, a(2k)^2 , a(2k+1)^2) is an arithmetic progression, i.e., 2*a(2k)^2 = a(2k-1)^2 + a(2k+1)^2.
In general a triple((x-y)^2,z^2,(x+y)^2) is an arithmetic progression if and only if x^2+y^2=z^2, e.g., (17^2, 53^2, 73^2).
The first differences of this sequence is the interleaved sequence 4,36,20,52,36,68,52,....

Examples

			a(5) = 2*a(4) - 2*a(2) + a(1) = 2*125 - 2*53 + 17 = 161.
		

Crossrefs

Programs

  • Magma
    I:=[13, 17, 53, 73]; [n le 4 select I[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..75]];
    
  • Mathematica
    A214393[n_] := 4*n*(n+3) + 6*(-1)^n + 7; Array[A214393, 50, 0] (* or *)
    LinearRecurrence[{2, 0, -2, 1}, {13, 17, 53, 73}, 50] (* Paolo Xausa, Feb 22 2024 *)
  • Maxima
    A214393(n):=4*n*(n+3)+6*(-1)^n+7$
    makelist(A214393(n),n,0,30); /* Martin Ettl, Nov 01 2012 */

Formula

a(n) = 2*a(n-1)-2*a(n-3)+a(n-4).
G.f.: (13-9*x+19*x^2-7*x^3)/((1+x)*(1-x)^3).
a(n) = 4*n*(n+3)+6*(-1)^n+7.
2*a(2n)^2 = a(2n-1)^2 + a(2n+1)^2.