This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214410 #15 May 22 2021 14:25:57 %S A214410 15,20,23,31,32,40,42,45,47,48,53,58,60,61,63,68,73,74,75,76,78,79,87, %T A214410 88,92,95,96,97,99,106,107,109,110,111,112,116,117,118,120,127,128, %U A214410 130,131,132,133,135,137,139,140,141,143,150,151,154,156,158,159,161 %N A214410 Numbers that can't be expressed as the sum of a square and a Fibonacci number. %C A214410 0 is considered to be a Fibonacci number. %e A214410 17 = 16+1, 16 is a square and 1 is a Fibonacci number, so 17 is not in the sequence. %p A214410 q:= proc(n) local f,g; f,g:= 0,1; %p A214410 do if f>n then return true %p A214410 elif issqr(n-f) then return false %p A214410 else f,g:= g,f+g %p A214410 fi od %p A214410 end: %p A214410 select(q, [$0..200])[]; # _Alois P. Heinz_, May 22 2021 %t A214410 nn = 161; sq = Range[0, Sqrt[nn]]^2; fb = {}; i = 0; While[f = Fibonacci[i]; f < nn, i++; AppendTo[fb, f]]; fb = Union[fb]; Complement[Range[0, nn], Union[Flatten[Outer[Plus, sq, fb]]]] (* _T. D. Noe_, Jul 31 2012 *) %o A214410 (Python) %o A214410 prpr = 0 %o A214410 prev = 1 %o A214410 fib = [0]*100 %o A214410 for n in range(100): %o A214410 fib[n] = prpr %o A214410 curr = prpr+prev %o A214410 prpr = prev %o A214410 prev = curr %o A214410 for n in range(1234): %o A214410 i = yes = 0 %o A214410 while i*i<=n: %o A214410 r = n - i*i %o A214410 if r in fib: %o A214410 yes = 1 %o A214410 break %o A214410 i += 1 %o A214410 if yes==0: %o A214410 print(n, end=',') %o A214410 (Python) %o A214410 from sympy import fibonacci %o A214410 from itertools import count, takewhile %o A214410 def aupto(lim): %o A214410 fbs = list(takewhile(lambda x: x<=lim, (fibonacci(i) for i in count(0)))) %o A214410 sqs = list(takewhile(lambda x: x<=lim, (i*i for i in count(0)))) %o A214410 return sorted(set(range(1, lim+1)) - set(f+s for f in fbs for s in sqs)) %o A214410 print(aupto(161)) # _Michael S. Branicky_, May 22 2021 %Y A214410 Cf. A000045, A000290, A132144, A214412. %K A214410 nonn,easy %O A214410 1,1 %A A214410 _Alex Ratushnyak_, Jul 16 2012