This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214411 #57 Jul 12 2022 08:41:28 %S A214411 0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0, %T A214411 1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0, %U A214411 0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0 %N A214411 The maximum exponent k of 7 such that 7^k divides n. %C A214411 7-adic valuation of n. %H A214411 Harvey P. Dale, <a href="/A214411/b214411.txt">Table of n, a(n) for n = 1..1000</a> %H A214411 Dario T. de Castro, <a href="http://math.colgate.edu/~integers/w61/w61.pdf">P-adic Order of Positive Integers via Binomial Coefficients</a>, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 22, Paper A61, 2022. %F A214411 G.f.: Sum_{k>=1} x^(7^k)/(1-x^(7^k)). See A112765. - _Wolfdieter Lang_, Jun 18 2014 %F A214411 If n == 0 (mod 7) then a(n) = 1 + a(n/7), otherwise a(n) = 0. - _M. F. Hasler_, Mar 05 2020 %F A214411 Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/6. - _Amiram Eldar_, Jan 17 2022 %F A214411 a(n) = 7*Sum_{j=1..floor(log(n)/log(7))} frac(binomial(n, 7^j)*7^(j-1)/n). - _Dario T. de Castro_, Jul 12 2022 %e A214411 n=147 = 3*7*7 is divisible by 7^2, so a(147)=2. %p A214411 seq(padic:-ordp(n,7), n=1..100); # _Robert Israel_, Mar 05 2020 %t A214411 mek[n_]:=Module[{k=Ceiling[Log[7,n]]},While[!Divisible[n,7^k],k--];k]; Array[ mek,140] (* _Harvey P. Dale_, Mar 27 2017 *) %t A214411 IntegerExponent[Range[150],7] (* Suggested by Amiram Eldar *) (* _Harvey P. Dale_, Mar 07 2020 *) %o A214411 (PARI) a(n)=valuation(n,7) \\ _Charles R Greathouse IV_, Jul 17 2012 %o A214411 (PARI) A=vector(1000);for(i=1,log(#A+.5)\log(7),forstep(j=7^i,#A,7^i,A[j]++));A \\ _Charles R Greathouse IV_, Jul 17 2012 %Y A214411 Cf. A007814 (2-adic), A007949 (3-adic), A112765 (5-adic), A082784. %K A214411 nonn,easy %O A214411 1,49 %A A214411 _Redjan Shabani_, Jul 16 2012