A214448 Least m>0 such that m^4 >= n!.
1, 2, 2, 3, 4, 6, 9, 15, 25, 44, 80, 148, 281, 544, 1070, 2139, 4343, 8946, 18676, 39495, 84545, 183102, 400981, 887517, 1984548, 4481308, 10215173, 23498233, 54529901, 127618907, 301130984, 716214216
Offset: 1
Examples
a(4)=3 because 3^2 < 4! <= 3^3.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A214049.
Programs
-
Maple
A214448 := proc(n) ceil(root[4](n!)) ; end proc: # R. J. Mathar, Jul 24 2012
-
Mathematica
Table[Ceiling[n!^(1/4)], {n, 1, 40}]
Formula
a(n) = ceiling(n!^(1/4)).