A214457 Table read by antidiagonals in which entry T(n,k) in row n and column k gives the number of possible rhombus tilings of an octagon with interior angles of 135 degrees and sequences of side lengths {n, k, 1, 1, n, k, 1, 1} (as the octagon is traversed), n,k in {1,2,3,...}.
8, 20, 20, 40, 75, 40, 70, 210, 210, 70, 112, 490, 784, 490, 112, 168, 1008, 2352, 2352, 1008, 168, 240, 1890, 6048, 8820, 6048, 1890, 240, 330, 3300, 13860, 27720, 27720, 13860, 3300, 330, 440, 5445, 29040, 76230, 104544, 76230, 29040, 5445, 440
Offset: 1
Examples
See [Jeffery]. T(1,1) = 8 because there are eight ways to tile the proposed octagon with rhombuses. Table begins as 8 20 40 70 112 ... 20 75 210 490 1008 ... 40 210 784 2352 6048 ... 70 490 2352 8820 27720 ... 112 1008 6048 27720 76230 ... ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows n = 1..150, flattened)
- Serge Elnitsky, Rhombic tilings of polygons and classes of reduced words in Coxeter groups (preprint), J. Combin. Theory Ser. A, Vol. 77, Issue 2, 193-221 (1997).
- L. E. Jeffery, Worked out example for A214457(1,1)=8
- Tad White, Quota Trees, arXiv:2401.01462 [math.CO], 2024. See p. 20.
Crossrefs
Programs
-
Mathematica
Table[2*(# + k + 1)!*(# + k + 2)!/(#!*k!*(# + 2)!*(k + 2)!) &[n - k + 1], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Feb 26 2024 *)
Formula
T(n,k) = 2*(n+k+1)!*(n+k+2)!/[n!*k!*(n+2)!*(k+2)!].
Comments