A214508 Decimal expansion of the series limit sum_{k>=1} (-1)^(k+1) sum_{t=1..k} 1/(t^2*(k+1)^2).
1, 6, 2, 6, 5, 4, 6, 6, 7, 3, 9, 7, 4, 2, 0, 0, 8, 0, 7, 7, 5, 5, 6, 4, 5, 6, 5, 1, 7, 3, 5, 9, 1, 1, 0, 1, 1, 8, 7, 0, 6, 4, 2, 0, 8, 3, 3, 7, 6, 5, 9, 9, 2, 3, 7, 2, 6, 7, 6, 3, 0, 6, 9, 8, 3, 1, 8, 4, 3, 5, 7, 7, 2, 9, 8, 2, 1, 0, 7, 4, 9, 2, 1, 6, 7, 2, 0, 0, 7, 4, 6, 3, 7, 5, 7, 4, 9, 8, 1, 0, 6, 7, 9, 6, 9
Offset: 0
Examples
0.162654667397420080...
Links
- D. H. Bailey, J. M. Borwein, R. Girgensohn, Experimental evaluation of Euler sums, Exp. Math. 3 (1994) 17, variable alpha(2,2)
- G. Rutledge, R. D. Douglass, Table of definite integrals, Am. Math. Monthly 45 (1938) 525, variable A_4.
Programs
-
Maple
a099218 := polylog(4,1/2) ; -4*a099218+13*Pi^4/288-7/2*Zeta(3)*log(2)+Pi^2/6*(log(2))^2-(log(2))^4/6 ; evalf(%) ;
-
Mathematica
NSum[(-1)^(k + 1)*HarmonicNumber[k, 2]/(k + 1)^2, {k, 1, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> 110] // RealDigits[#, 10, 105] & // First (* or, from formula: *) 13*Pi^4/288 + 1/6*Pi^2*Log[2]^2 - 1/6*Log[2]*(Log[2]^3 + 21*Zeta[3]) - 4*PolyLog[4, 1/2] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Mar 06 2013 *)
-
PARI
13*Pi^4/288 + 1/6*Pi^2*log(2)^2 - 1/6*log(2)*(log(2)^3 + 21*zeta(3)) - 4*polylog(4, 1/2) \\ Charles R Greathouse IV, Jul 18 2014
Extensions
More terms from Jean-François Alcover, Feb 12 2013
Comments