cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214508 Decimal expansion of the series limit sum_{k>=1} (-1)^(k+1) sum_{t=1..k} 1/(t^2*(k+1)^2).

Original entry on oeis.org

1, 6, 2, 6, 5, 4, 6, 6, 7, 3, 9, 7, 4, 2, 0, 0, 8, 0, 7, 7, 5, 5, 6, 4, 5, 6, 5, 1, 7, 3, 5, 9, 1, 1, 0, 1, 1, 8, 7, 0, 6, 4, 2, 0, 8, 3, 3, 7, 6, 5, 9, 9, 2, 3, 7, 2, 6, 7, 6, 3, 0, 6, 9, 8, 3, 1, 8, 4, 3, 5, 7, 7, 2, 9, 8, 2, 1, 0, 7, 4, 9, 2, 1, 6, 7, 2, 0, 0, 7, 4, 6, 3, 7, 5, 7, 4, 9, 8, 1, 0, 6, 7, 9, 6, 9
Offset: 0

Views

Author

R. J. Mathar, Jul 19 2012

Keywords

Comments

Equals the alternating sum over (-1)^(k+1)*H_k^(2)/(k+1)^2, where H_k^(2) is the harmonic sum over inverse squares, H_k^(2) = sum_{t=1..k} 1/t^2 = 1, 5/4, 49/36, 205/144, 5269/3600,..., see A007406. The sum over H_k^(2)/(k+1)^2, over the absolute values, is Pi^4/120 = 0.811742425283353...

Examples

			0.162654667397420080...
		

Programs

  • Maple
    a099218 := polylog(4,1/2) ;
    -4*a099218+13*Pi^4/288-7/2*Zeta(3)*log(2)+Pi^2/6*(log(2))^2-(log(2))^4/6 ;
    evalf(%) ;
  • Mathematica
    NSum[(-1)^(k + 1)*HarmonicNumber[k, 2]/(k + 1)^2, {k, 1, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> 110] // RealDigits[#, 10, 105] & // First (* or, from formula: *) 13*Pi^4/288 + 1/6*Pi^2*Log[2]^2 - 1/6*Log[2]*(Log[2]^3 + 21*Zeta[3]) - 4*PolyLog[4, 1/2] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Mar 06 2013 *)
  • PARI
    13*Pi^4/288 + 1/6*Pi^2*log(2)^2 - 1/6*log(2)*(log(2)^3 + 21*zeta(3)) - 4*polylog(4, 1/2) \\ Charles R Greathouse IV, Jul 18 2014

Formula

Equals -4*A099218 +13*Pi^4/288 -7*A002117*log(2)/2+log^2(2)*(Pi^2-log^2(2))/6.

Extensions

More terms from Jean-François Alcover, Feb 12 2013