This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214554 #25 Jul 30 2012 13:02:22 %S A214554 1,-1,2,-3,-4,4,11,-18,-12,8,57,88,-72,-32,16,-361,570,440,-240,-80, %T A214554 32,-2763,-4332,3420,1760,-720,-192,64,24611,-38682,-30324,15960,6160, %U A214554 -2016,-448,128,250737,393776,-309456,-161728,63840,19712,-5376,-1024,256 %N A214554 Triangle read by rows, coefficients of polynomials related to the Springer numbers A001586. %C A214554 The polynomials might be called Springer polynomials because both p{n}(0) and p{n}(1) are signed versions of the Springer numbers. p{n}(0) is the first column of the triangle (A212435 with e.g.f. exp(-x)/cosh(2x)) and p{n}(1) are the row sums (A188458 with e.g.f. exp(x)/cosh(2x)). %F A214554 p{0}(x) = 1 and for n>0 %F A214554 p{n}(x) = Sum_{0<=k<n; 2|k} 2^(n-k)*p{k}(1/2)*binomial(n,k)*((x-1/2)^(n-k)+(n mod 2)-1). %e A214554 [0] 1, %e A214554 [1] -1, 2, %e A214554 [2] -3, -4, 4, %e A214554 [3] 11, -18, -12, 8, %e A214554 [4] 57, 88, -72, -32, 16, %e A214554 [5] -361, 570, 440, -240, -80, 32, %e A214554 [6] -2763, -4332, 3420, 1760, -720, -192, 64, %e A214554 [7] 24611, -38682, -30324, 15960, 6160, -2016, -448, 128. %o A214554 (Sage) %o A214554 @CachedFunction %o A214554 def SpringerPoly(n,x) : %o A214554 if n == 0 : return 1 %o A214554 return add(2^(n-k)*SpringerPoly(k,1/2)*binomial(n,k)*((x-1/2)^(n-k)+n%2-1) for k in range(n)[::2]) %o A214554 R = PolynomialRing(ZZ, 'x') %o A214554 def A214554_row(n) : return R(SpringerPoly(n,x)).coeffs() %o A214554 for n in (0..7) : A214554_row(n) %K A214554 sign,tabl %O A214554 0,3 %A A214554 _Peter Luschny_, Jul 30 2012