cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214554 Triangle read by rows, coefficients of polynomials related to the Springer numbers A001586.

This page as a plain text file.
%I A214554 #25 Jul 30 2012 13:02:22
%S A214554 1,-1,2,-3,-4,4,11,-18,-12,8,57,88,-72,-32,16,-361,570,440,-240,-80,
%T A214554 32,-2763,-4332,3420,1760,-720,-192,64,24611,-38682,-30324,15960,6160,
%U A214554 -2016,-448,128,250737,393776,-309456,-161728,63840,19712,-5376,-1024,256
%N A214554 Triangle read by rows, coefficients of polynomials related to the Springer numbers A001586.
%C A214554 The polynomials might be called Springer polynomials because both p{n}(0) and p{n}(1) are signed versions of the Springer numbers. p{n}(0) is the first column of the triangle (A212435 with e.g.f. exp(-x)/cosh(2x)) and p{n}(1) are the row sums (A188458 with e.g.f. exp(x)/cosh(2x)).
%F A214554 p{0}(x) = 1 and for n>0
%F A214554 p{n}(x) = Sum_{0<=k<n; 2|k} 2^(n-k)*p{k}(1/2)*binomial(n,k)*((x-1/2)^(n-k)+(n mod 2)-1).
%e A214554 [0]     1,
%e A214554 [1]    -1,      2,
%e A214554 [2]    -3,     -4,      4,
%e A214554 [3]    11,    -18,    -12,     8,
%e A214554 [4]    57,     88,    -72,   -32,   16,
%e A214554 [5]  -361,    570,    440,  -240,  -80,    32,
%e A214554 [6] -2763,  -4332,   3420,  1760, -720,  -192,   64,
%e A214554 [7] 24611, -38682, -30324, 15960, 6160, -2016, -448, 128.
%o A214554 (Sage)
%o A214554 @CachedFunction
%o A214554 def SpringerPoly(n,x) :
%o A214554     if n == 0 : return 1
%o A214554     return add(2^(n-k)*SpringerPoly(k,1/2)*binomial(n,k)*((x-1/2)^(n-k)+n%2-1) for k in range(n)[::2])
%o A214554 R = PolynomialRing(ZZ, 'x')
%o A214554 def A214554_row(n) : return R(SpringerPoly(n,x)).coeffs()
%o A214554 for n in (0..7) : A214554_row(n)
%K A214554 sign,tabl
%O A214554 0,3
%A A214554 _Peter Luschny_, Jul 30 2012