This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214555 #22 Nov 23 2022 13:33:00 %S A214555 495,549945,554999445,555499994445,555549999944445,555554999999444445, %T A214555 555555499999994444445,555555549999999944444445, %U A214555 555555554999999999444444445,555555555499999999994444444445,555555555549999999999944444444445 %N A214555 Subsequence of fixed points A099009 of the Kaprekar mapping with numbers of the form 5(n)//4//9(n+1)//4(n)//5. %C A214555 The symbols // denote concatenation of digits in the definition, and d(n) denotes n repetitions of d, n >= 0. %C A214555 Conjecture: satisfies a linear recurrence having signature (1111, -112110, 1111000, -1000000). - _Harvey P. Dale_, Nov 23 2022 %H A214555 Syed Iddi Hasan, <a href="/A214555/b214555.txt">Table of n, a(n) for n = 0..165</a> %F A214555 If d(n) denotes n repetitions of the digit d, then a(n) = 5(n)49(n+1)4(n)5, where n >= 0. %e A214555 549945 is a fixed point of the mapping for n=1. %t A214555 Table[FromDigits[Join[PadRight[{},n,5],{4},PadRight[{},n+1,9],PadRight[{},n,4],{5}]],{n,0,15}] (* _Harvey P. Dale_, Nov 23 2022 *) %Y A214555 Cf. A214556-A214559. %K A214555 nonn,base %O A214555 0,1 %A A214555 _Syed Iddi Hasan_, Jul 20 2012