cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214559 Subsequence of fixed points A099009 of the Kaprekar mapping with numbers of the form 9(x1+1)//8(x2)//7(x3+1)//6(x2)//5(x3+1)//4(x2)//3(x4)//2(x2)//1(x3)//0//9(x2)//8(x3+1)//7(x2)//6(x4)//5(x2)//4(x3+1)//3(x2)//2(x3+1)//1(x2)//0(x1)//1.

This page as a plain text file.
%I A214559 #31 Apr 06 2015 06:58:11
%S A214559 97508421,9753086421,9975084201,975330866421,997530864201,
%T A214559 999750842001,97533308666421,97755108844221,99753308664201,
%U A214559 99975308642001,99997508420001,9753333086666421,9775531088644221,9975333086664201,9977551088442201,9997533086642001,9999753086420001
%N A214559 Subsequence of fixed points A099009 of the Kaprekar mapping with numbers of the form 9(x1+1)//8(x2)//7(x3+1)//6(x2)//5(x3+1)//4(x2)//3(x4)//2(x2)//1(x3)//0//9(x2)//8(x3+1)//7(x2)//6(x4)//5(x2)//4(x3+1)//3(x2)//2(x3+1)//1(x2)//0(x1)//1.
%C A214559 The sign // denotes concatenation of digits in the definition, and d(x) denotes x repetitions of d, x>=0.
%C A214559 Adding digits that share the same "x_i" parameter (where i=1,2,3,4) yields sums divisible by 9 (that is, with the digital root being equal to 9): i=1, 9+0=9; i=2, 8+6+4+2+9+7+5+3+1=45; i=3, 7+5+1+8+4+2=27; i=4, 3+6=9. - _Alexander R. Povolotsky_, Mar 19 2015
%H A214559 Syed Iddi Hasan, <a href="/A214559/b214559.txt">Table of n, a(n) for n = 0..9554</a>
%F A214559 If d(x) denotes x repetitions of the digit d, then a(n)=9(x1+1)8(x2)7(x3+1)6(x2)5(x3+1)4(x2)3(x4)2(x2)1(x3)09(x2)8(x3+1)7(x2)6(x4)5(x2)4(x3+1)3(x2)2(x3+1)1(x2)0(x1)1, where x1,x2,x3,x4>=0.
%e A214559 9753086421 is a fixed point of the mapping for x1=0, x2=0, x3=0, x4=1.
%Y A214559 Cf. A214555, A214556, A214557, A214558.
%K A214559 nonn,base
%O A214559 0,1
%A A214559 _Syed Iddi Hasan_, Jul 20 2012
%E A214559 More terms using b-file by _Michel Marcus_, Mar 27 2015