This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214561 #38 Oct 13 2022 14:57:43 %S A214561 1,1,1,4,1,6,6,11,1,14,11,20,10,28,23,33,1,31,27,41,26,49,36,59,16,58, %T A214561 41,68,37,62,51,83,1,79,61,88,58,97,85,98,53,115,96,116,63,123,96,128, %U A214561 41,138,105,144,90,163,128,164,81,172,148,181,124,167,134,201,1 %N A214561 Number of 1's in binary expansion of n^n. %C A214561 a(n) + A214562(n) = 1+floor(log_2(n^n)) = 1, 1, 3, 5, 9, 12, 16, 20, 25, 29, 34, 39, 44, 49... is the number of binary digits in n^n. - _R. J. Mathar_, Jul 22 2012 %H A214561 Alois P. Heinz, <a href="/A214561/b214561.txt">Table of n, a(n) for n = 0..16384</a> %F A214561 a(n) = A000120(A000312(n)). %F A214561 a(2^k)=1. %p A214561 a:= proc(n) option remember; local m, r; %p A214561 m, r:= n^n, 0; %p A214561 while m>0 do r:= r +irem(m, 2, 'm') od; r %p A214561 end: %p A214561 seq(a(n), n=0..100); # _Alois P. Heinz_, Jul 21 2012 %t A214561 Table[Count[IntegerDigits[n^n,2],1],{n,1,64}] (* _Geoffrey Critzer_, Sep 30 2013 *) %t A214561 Join[{1},Table[DigitCount[n^n,2,1],{n,100}]] (* _Harvey P. Dale_, Oct 13 2022 *) %o A214561 (Python) %o A214561 for n in range(300): %o A214561 c = 0 %o A214561 b = n**n %o A214561 while b>0: %o A214561 c += b&1 %o A214561 b//=2 %o A214561 print(c, end=',') %o A214561 (Python) %o A214561 def a(n): return bin(n**n)[2:].count('1') %o A214561 print([a(n) for n in range(65)]) # _Michael S. Branicky_, May 22 2021 %o A214561 (PARI) vector(66, n, b=binary((n-1)^(n-1)); sum(j=1, #b, b[j])) /* _Joerg Arndt_, Jul 21 2012 */ %Y A214561 Cf. A000120, A159918, A079584. %K A214561 nonn %O A214561 0,4 %A A214561 _Alex Ratushnyak_, Jul 21 2012