This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214574 #42 Jan 20 2025 09:07:41 %S A214574 1,1,1,2,1,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2, %T A214574 2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, %U A214574 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,2,2,2,2,2,2,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3 %N A214574 The Strahler number of the rooted tree with Matula-Goebel number n. %C A214574 The Strahler number of a vertex of a rooted tree is defined recursively in the following way: (i) the Strahler number of a leaf is 1; (ii) if the vertex has one child with Strahler number i and all other children have Strahler number less than i, then the Strahler number of the vertex is again i; (iii) if the vertex has two or more children with Strahler number i and no child with Strahler number greater than i, then the Strahler number of the vertex is i+1. See the Wikipedia reference. The Strahler number of a rooted tree T is defined as the Strahler number of the root of T. %C A214574 The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T. %H A214574 Antti Karttunen, <a href="/A214574/b214574.txt">Table of n, a(n) for n = 1..65537</a> %H A214574 Emeric Deutsch, <a href="http://arxiv.org/abs/1111.4288">Rooted tree statistics from Matula numbers</a>, arXiv:1111.4288 [math.CO], 2011. %H A214574 Emeric Deutsch, <a href="http://dx.doi.org/10.1016/j.dam.2012.05.012">Rooted tree statistics from Matula numbers</a>, Discrete Appl. Math., 160, 2012, 2314-2322. %H A214574 F. Goebel, <a href="http://dx.doi.org/10.1016/0095-8956(80)90049-0">On a 1-1-correspondence between rooted trees and natural numbers</a>, J. Combin. Theory, B 29 (1980), 141-143. %H A214574 I. Gutman and A. Ivic, <a href="http://dx.doi.org/10.1016/0012-365X(95)00182-V">On Matula numbers</a>, Discrete Math., 150, 1996, 131-142. %H A214574 I. Gutman and Yeong-Nan Yeh, <a href="http://www.emis.de/journals/PIMB/067/3.html">Deducing properties of trees from their Matula numbers</a>, Publ. Inst. Math., 53 (67), 1993, 17-22. %H A214574 D. W. Matula, <a href="http://www.jstor.org/stable/2027327">A natural rooted tree enumeration by prime factorization</a>, SIAM Rev. 10 (1968) 273. %H A214574 Wikipedia, <a href="http://en.wikipedia.org/wiki/Strahler_number">Strahler number</a> %H A214574 <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a> %F A214574 Define the Strahler polynomial of a rooted tree T as the generating polynomial of the vertices of T with respect to their Strahler numbers. For example, it follows at once that the Strahler polynomial of the rooted tree V is 2x + x^2. Denote by G(n)=G(n;x) the Strahler polynomial of the rooted tree with Matula-Goebel number n. Clearly, A214573(n,k) is the coefficient of x^k in G(n). We have (i) G(1)= x; (ii) if n=p(t) (the t-th prime), then G(n) = x^{degree(G(t)} + G(t); (iii) if n=rs (r,s>=2), then G(n) = G(r) - degree (G(r)) + G(s) - degree(G(s) + x^m, where m = 1+degree(G(r)) if degree(G(r))=degree(G(s)) and m = max(degree(G(r), G(s)) otherwise. The Strahler number a(n) = degree(G(n)). %e A214574 a(4)=2 because the rooted tree with Matula-Goebel number 4 is V; the two leaves have Strahler numbers 1,1, and the root has Strahler number 2; this is - by definition - the Strahler number of the tree. %p A214574 with(numtheory): G := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc; s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then x elif bigomega(n) = 1 then sort(expand(x^degree(G(pi(n)))+G(pi(n)))) elif 1 < bigomega(n) and degree(G(r(n))) <> degree(G(s(n))) then sort(G(r(n))-x^degree(G(r(n)))+G(s(n))-x^degree(G(s(n)))+x^max(degree(G(r(n))), degree(G(s(n))))) else sort(G(r(n))-x^degree(G(r(n)))+G(s(n))-x^degree(G(s(n)))+x^(1+degree(G(r(n))))) end if end proc: seq(degree(G(n)), n = 1 .. 200); %o A214574 (PARI) A214574(n) = if(1==n, 1, if(isprime(n), A214574(primepi(n)), my(f=factor(n), m, mpi=0); f[,1]=apply(A214574,f[,1]); m = vecmax(f[,1]); for(i=1,#f~,if(m==f[i,1], if(mpi || f[i,2]>1, return(1+m), mpi = i))); (m))); \\ _Antti Karttunen_, Jan 20 2025 %Y A214574 Cf. A061775, A214573. %Y A214574 Cf. A356082 (most likely the positions of the first occurrences of each n, also positions of the records). %K A214574 nonn %O A214574 1,4 %A A214574 _Emeric Deutsch_, Aug 14 2012