A214575 Triangle read by rows: T(n,k) is the number of partitions of n in which each part is divisible by the next and have first part equal to k (1 <= k <= n).
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 4, 2, 4, 1, 2, 1, 1, 1, 4, 3, 4, 1, 3, 1, 1, 1, 1, 5, 3, 6, 2, 4, 1, 2, 1, 1, 1, 5, 3, 6, 2, 4, 1, 2, 1, 1, 1, 1, 6, 4, 9, 2, 7, 1, 4, 2, 2, 1, 1, 1, 6, 4, 9, 2, 7, 1, 4, 2, 2, 1, 1, 1, 1, 7, 4, 12, 2, 9, 2, 6, 2, 3, 1, 2, 1, 1
Offset: 1
Examples
T(7,4)=2 because we have (4,2,1) and (4,1,1,1). Triangle starts: 1; 1, 1; 1, 1, 1; 1, 2, 1, 1; 1, 2, 1, 1, 1; 1, 3, 2, 2, 1, 1;
Links
- Seiichi Manyama, Rows n = 1..50, flattened
- M. K. Goldberg and E. M. Livshits, On minimal universal trees, Mathematical Notes of the Acad. of Sciences of the USSR, 4, 1968, 713-717 (translation from the Russian Mat. Zametki 4 1968 371-379).
- O. Rojo, Spectra of weighted generalized Bethe trees joined at the root, Linear Algebra and its Appl., 428, 2008, 2961-2979.
Programs
-
Maple
with(numtheory): T := proc (n, k) if k = 1 then 1 elif n < k then 0 else add(T(n-k, divisors(k)[j]), j = 1 .. tau(k)) end if end proc: for n to 18 do seq(T(n, k), k = 1 .. n) end do; # yields sequence in triangular form
Formula
T(n,1)=1; T(n,k) = Sum_{j|k}T(n-k,j); T(n,k)=0 if k>n.
Comments