A214578 Irregular triangle read by rows: if the rooted tree with Matula-Goebel number n is a generalized Bethe tree, then row n is the sequence of the associated partition numbers; otherwise, row n consists of a single 0.
0, 1, 1, 1, 2, 1, 1, 1, 0, 2, 1, 3, 2, 2, 0, 1, 1, 1, 1, 0, 0, 0, 0, 4, 2, 1, 1, 0, 3, 1, 0, 0, 0, 2, 2, 1, 0, 2, 2, 2, 0, 3, 3, 0, 0, 0, 1, 1, 1, 1, 1, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 6, 0, 0, 3, 1, 1
Offset: 1
Examples
Row 7 is 2,1 because the rooted tree with Matula-Goebel number 7 is Y; it is a generalized Bethe tree with corresponding partition 2,1 (number of edges at the various levels). Triangle starts: 0; 1; 1,1; 2; 1,1,1; 0; 2,1; ...
References
- O. Rojo, Spectra of weighted generalized Bethe trees joined at the root, Linear Algebra and its Appl., 428, 2008, 2961-2979.
- M. K. Goldberg and E. M. Livshits, On minimal universal trees, Mathematical Notes of the Acad. of Sciences of the USSR, 4, 1968, 713-717 (translation from the Russian Mat. Zametki 4 1968 371-379).
Links
- Emeric Deutsch, Rooted tree statistics from Matula numbers, Discrete Appl. Math., 160, 2012, 2314-2322; arXiv preprint.
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
Programs
-
Maple
with(numtheory): Q := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 0 elif n = 2 then 1 elif bigomega(n) = 1 and Q(pi(n)) = 0 then 0 elif bigomega(n) = 1 then sort(expand(1+x*Q(pi(n)))) elif Q(r(n)) <> 0 and Q(s(n)) <> 0 and type(simplify(Q(r(n))/Q(s(n))), constant) = true then sort(Q(r(n))+Q(s(n))) else 0 end if end proc: for n to 20 do if Q(n) = 0 then print(0) else print(seq(coeff(Q(n), x, degree(Q(n))-j), j = 0 .. degree(Q(n)))) end if end do; # yields sequence in triangular form
-
Mathematica
r[n_Integer] := r[n] = FactorInteger[n][[1, 1]]; s[n_Integer] := n/r[n]; Q[n_Integer] := Cancel@ Together@ Simplify@ Which[n == 1, 0, n == 2, 1, PrimeOmega[n] == 1 && Q[PrimePi[n]] === 0, 0, PrimeOmega[n] == 1, 1 + x * Q[PrimePi[n]], Q[r[n]] =!= 0 && Q[s[n]] =!= 0 && FreeQ[Q[r[n]]/Q[s[n]], x], Q[r[n]] + Q[s[n]], True, 0]; Table[If[Q[n] =!= 0, Reverse@ CoefficientList[Q[n], x], {0}], {n, 1, 100}] // Flatten (* Jean-François Alcover, Aug 03 2024, after Emeric Deutsch *)
Formula
If n>=1 and the rooted tree with Matula-Goebel number n is not a generalized Bethe tree then we define Q(n)=0; otherwise let Q(n) be the polynomial (in x) whose coefficients are the parts of the partition associated to the generalized Bethe tree. We have Q(1)=0; Q(2)=1; if n = p(t) (=the t-th prime) and Q(t)=0, then Q(n)=0; if n=p(t) and Q(t) =/ 0, then Q(n)=1+xQ(t); if n=rs , r, s >=2, Q(r)=/0, Q(s)=/0, and Q(r)/Q(s) = const, then Q(n) = Q(r)+Q(s); otherwise, Q(n) = 0.
With the given Maple program we obtain, for example, Q(529) = 4x^2 + 4x + 2, showing that the corresponding rooted tree is a generalized Bethe tree; also Q(987654321)=0, showing that the corresponding rooted tree is not a generalized Bethe tree.
Comments