cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214604 Odd numbers by transposing the right half of A176271, triangle read by rows: T(n,k) = A176271(n - 1 + k, n), 1 <= k <= n.

This page as a plain text file.
%I A214604 #13 Mar 10 2024 09:35:56
%S A214604 1,5,9,11,17,25,19,27,37,49,29,39,51,65,81,41,53,67,83,101,121,55,69,
%T A214604 85,103,123,145,169,71,87,105,125,147,171,197,225,89,107,127,149,173,
%U A214604 199,227,257,289,109,129,151,175,201,229,259,291,325,361,131,153,177,203,231,261,293,327,363,401,441
%N A214604 Odd numbers by transposing the right half of A176271, triangle read by rows: T(n,k) = A176271(n - 1 + k, n), 1 <= k <= n.
%H A214604 Reinhard Zumkeller, <a href="/A214604/b214604.txt">Rows n = 1..150 of triangle, flattened</a>
%F A214604 T(n,k) = (n+k)^2 - n - 3*k + 1.
%F A214604 Sum_{k=1..n} T(n, k) = A214659(n).
%F A214604 T(2*n-1, n) = A214660(n) (main diagonal).
%F A214604 T(n, 1) = A028387(n-1).
%F A214604 T(n, n) = A016754(n-1).
%F A214604 T(n, k) = A214661(n,k) + 2*A025581(n,k).
%F A214604 T(n, k) = 2*A000290(A094727(n,k)) - A214661(n,k).
%e A214604 .     Take the first n elements of the n-th diagonal (northeast to
%e A214604 .     southwest) of the triangle on the left side
%e A214604 .     and write this as n-th row on the triangle of the right side.
%e A214604 . 1:                1                    1
%e A214604 . 2:              _   5                  5  9
%e A214604 . 3:            _   9  11               11 17 25
%e A214604 . 4:         __  __  17  19             19 27 37 49
%e A214604 . 5:       __  __  25  27  29           29 39 51 65 ..
%e A214604 . 6:     __  __  __  37  39  41         41 53 67 .. .. ..
%e A214604 . 7:   __  __  __  49  51  53  55       55 69 .. .. .. .. ..
%e A214604 . 8: __  __  __  __  65  67  69  71     71 .. .. .. .. .. .. .. .
%t A214604 Table[(n+k)^2-n-3*k+1, {n,15}, {k,n}]//Flatten (* _G. C. Greubel_, Mar 10 2024 *)
%o A214604 (Haskell)
%o A214604 import Data.List (transpose)
%o A214604 a214604 n k = a214604_tabl !! (n-1) !! (k-1)
%o A214604 a214604_row n = a214604_tabl !! (n-1)
%o A214604 a214604_tabl = zipWith take [1..] $ transpose a176271_tabl
%o A214604 (Magma) [(n+k)^2-n-3*k+1: k in [1..n], n in [1..15]]; // _G. C. Greubel_, Mar 10 2024
%o A214604 (SageMath) flatten([[(n+k)^2-n-3*k+1 for k in range(1,n+1)] for n in range(1,16)]) # _G. C. Greubel_, Mar 10 2024
%Y A214604 Cf. A000290, A016754, A028387, A025581, A094727, A176271.
%Y A214604 Cf. A214659 (row sums), A214660 (main diagonal), A214661.
%K A214604 nonn,tabl
%O A214604 1,2
%A A214604 _Reinhard Zumkeller_, Jul 25 2012