This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214608 #4 Jul 23 2012 12:49:15 %S A214608 304,310,314,334,334,4137,4754,4811,4929,4920,4610,5260,4738,4784, %T A214608 4924,50775,66474,72137,71469,69764,65977,63790,55400,55907,57274, %U A214608 676474,969677,1118226,1096104,1058044,1003962,946620,864012,870946,884912,1154902,887242,651592,669896,710904 %N A214608 Irregular array T(n,k) of the numbers of non-extendable (complete) non-self-adjacent simple paths incorporating each of a minimal subset of nodes within a square lattice bounded by rectangles with nodal dimensions n and 9, n >= 2. %C A214608 The subset of nodes is contained in the top left-hand quarter of the rectangle and has nodal dimensions floor((n+1)/2) and 5 to capture all geometrically distinct counts. %C A214608 The quarter-rectangle is read by rows. %C A214608 The irregular array of numbers is: %C A214608 ...k......1.......2.......3.......4.......5.......6.......7.......8.......9......10......11......12......13......14......15 %C A214608 .n %C A214608 .2......304.....310.....314.....334.....334 %C A214608 .3.....4137....4754....4811....4929....4920....4610....5260....4738....4784....4924 %C A214608 .4....50775...66474...72137...71469...69764...65977...63790...55400...55907...57274 %C A214608 .5...676474..969677.1118226.1096104.1058044.1003962..946620..864012..870946..884912.1154902..887242..651592..669896..710904 %C A214608 where k indicates the position of a node in the quarter-rectangle. %C A214608 For each n, the maximum value of k is 5*floor((n+1)/2). %C A214608 Reading this array by rows gives the sequence. %H A214608 C. H. Gribble, <a href="https://oeis.org/wiki/Complete_non-self-adjacent_paths:Results_for_Square_Lattice">Computed characteristics of complete non-self-adjacent paths in a square lattice bounded by various sizes of rectangle.</a> %H A214608 C. H. Gribble, <a href="https://oeis.org/wiki/Complete non-self-adjacent paths:Program">Computes characteristics of complete non-self-adjacent paths in square and cubic lattices bounded by various sizes of rectangle and rectangular cuboid respectively.</a> %e A214608 When n = 2, the number of times (NT) each node in the rectangle (N) occurs in a complete non-self-adjacent simple path is %e A214608 N 0 1 2 3 4 5 6 7 8 %e A214608 9 10 11 12 13 14 15 16 17 %e A214608 NT 304 310 314 334 334 334 314 310 304 %e A214608 304 310 314 334 334 334 314 310 304 %e A214608 To limit duplication, only the top left-hand corner 304 and the 310, 314, 334, 334 to its right are stored in the sequence, %e A214608 i.e. T(2,1) = 304, T(2,2) = 310, T(2,3) = 314, T(2,4) = 334 and T(2,5) = 334. %Y A214608 Cf. A213106, A213249, A213426, A214042, A214376, A214397, A214399, A214504, A214510, A214563, A214601, A214503, A214605 %K A214608 nonn,tabf %O A214608 2,1 %A A214608 _Christopher Hunt Gribble_, Jul 22 2012