This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214622 #31 May 25 2024 12:12:58 %S A214622 1,-1,1,3,-2,1,-10,9,-3,1,45,-40,18,-4,1,-256,225,-100,30,-5,1,1743, %T A214622 -1536,675,-200,45,-6,1,-13840,12201,-5376,1575,-350,63,-7,1,125625, %U A214622 -110720,48804,-14336,3150,-560,84,-8,1,-1282816,1130625,-498240,146412,-32256,5670,-840,108,-9,1 %N A214622 Triangle read by rows, matrix inverse of [x^(n-k)](skp(n,x)-skp(n,x-1)+x^n) where skp denotes the Swiss-Knife polynomials A153641. %F A214622 T(n,k) = matrix inverse of A109449(n,k)*(-1)^floor((k-n+5)/2). %F A214622 T(n,0) = A003704(n+1). %F A214622 E.g.f.: exp(x*z)/(sech(x)+tanh(x)). - _Peter Luschny_, Aug 01 2012 %e A214622 Triangle begins: %e A214622 1; %e A214622 -1, 1; %e A214622 3, -2, 1; %e A214622 -10, 9, -3, 1; %e A214622 45, -40, 18, -4, 1; %e A214622 -256, 225, -100, 30, -5, 1; %e A214622 1743, -1536, 675, -200, 45, -6, 1; %e A214622 ... %p A214622 A214622_row := proc(n) local s,t,k; %p A214622 s := series(exp(z*x)/(sech(x)+tanh(x)),x,n+2); %p A214622 t := factorial(n)*coeff(s,x,n); seq(coeff(t,z,k), k=(0..n)) end: %p A214622 for n from 0 to 7 do A214622_row(n) od; # _Peter Luschny_, Aug 01 2012 %t A214622 A214622row[n_] := Module[{s, t}, %t A214622 s = Series[Exp[z*x]/(Sech[x] + Tanh[x]), {x, 0, n+2}]; %t A214622 t = n!*Coefficient[s, x, n]; %t A214622 Table[Coefficient[t, z, k], {k, 0, n}]]; %t A214622 Table[A214622row[n], {n, 0, 9}] // Flatten (* _Jean-François Alcover_, May 25 2024, after _Peter Luschny_ *) %o A214622 (Sage) %o A214622 R = PolynomialRing(ZZ, 'x') %o A214622 @CachedFunction %o A214622 def skp(n, x) : # Swiss-Knife polynomials A153641. %o A214622 if n == 0 : return 1 %o A214622 return add(skp(k, 0)*binomial(n, k)*(x^(n-k)-(n+1)%2) for k in range(n)[::2]) %o A214622 def A109449_signed(n, k) : return 0 if k > n else R(skp(n, x)-skp(n, x-1)+x^n)[k] %o A214622 T = matrix(ZZ, 9, A109449_signed).inverse(); T %K A214622 sign,tabl %O A214622 0,4 %A A214622 _Peter Luschny_, Jul 23 2012