cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214656 Floor of the imaginary part of the zeros of the complex Fibonacci function on the left half-plane.

This page as a plain text file.
%I A214656 #27 Mar 09 2024 10:29:09
%S A214656 0,0,1,1,2,2,3,3,4,5,5,6,6,7,7,8,8,9,10,10,11,11,12,12,13,14,14,15,15,
%T A214656 16,16,17,17,18,19,19,20,20,21,21,22,22,23,24,24,25,25,26,26,27,28,28,
%U A214656 29,29,30,30,31,31,32,33,33,34,34,35,35,36,36,37,38,38,39
%N A214656 Floor of the imaginary part of the zeros of the complex Fibonacci function on the left half-plane.
%C A214656 See the comment on the Fibonacci Function F(z) and its zeros in A214315, where also the T. Koshy reference is given.
%C A214656 The imaginary part of the zeros, corresponding to the real part x_0(k) given in A214315, is y_0(k) = -b*k, with b = 4*Pi*log(phi)/(Pi^2 + (2*log(phi))^2) and phi = (1+sqrt(5))/2. Note that b is approximately 0.5601299084.
%D A214656 Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001.
%H A214656 G. C. Greubel, <a href="/A214656/b214656.txt">Table of n, a(n) for n = 0..10000</a>
%F A214656 a(n) = floor(b*n), n>=0, with b = -y_0(1) = 4*Pi*log(phi)/(Pi^2 + (2*log(phi))^2).
%t A214656 a[n_]:= Floor[4*n*Pi*Log[GoldenRatio]/(Pi^2 + 4*Log[GoldenRatio]^2)];
%t A214656 Table[a[n], {n, 0, 70}] (* _Jean-François Alcover_, Jul 03 2013 *)
%o A214656 (PARI) A214656(n,phi=(sqrt(5)+1)/2)=n*4*Pi*log(phi)\(Pi^2+(2*log(phi))^2)  \\ _M. F. Hasler_, Jul 24 2012
%o A214656 (Magma) R:= RealField(100); [Floor(4*n*Pi(R)*Log((1+Sqrt(5))/2)/(Pi(R)^2 + (2*Log((1+Sqrt(5))/2))^2)) : n in [0..100]]; // _G. C. Greubel_, Mar 09 2024
%o A214656 (SageMath) [floor(4*n*pi*log(golden_ratio)/(pi^2 +4*(log(golden_ratio))^2)) for n in range(101)] # _G. C. Greubel_, Mar 09 2024
%Y A214656 Cf. A052952 (Fibonacci related formula), A214315 (real part).
%K A214656 nonn
%O A214656 0,5
%A A214656 _Wolfdieter Lang_, Jul 24 2012