cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214661 Odd numbers obtained by transposing the left half of A176271 into rows of a triangle: T(n,k) = A176271(n - 1 + k, k), 1 <= k <= n.

This page as a plain text file.
%I A214661 #19 Jan 15 2025 11:05:47
%S A214661 1,3,9,7,15,25,13,23,35,49,21,33,47,63,81,31,45,61,79,99,121,43,59,77,
%T A214661 97,119,143,169,57,75,95,117,141,167,195,225,73,93,115,139,165,193,
%U A214661 223,255,289,91,113,137,163,191,221,253,287,323,361,111,135,161,189,219,251,285,321,359,399,441
%N A214661 Odd numbers obtained by transposing the left half of A176271 into rows of a triangle: T(n,k) = A176271(n - 1 + k, k), 1 <= k <= n.
%H A214661 Reinhard Zumkeller, <a href="/A214661/b214661.txt">Rows n = 1..150 of triangle, flattened</a>
%F A214661 T(n, k) = (n+k)^2 - 3*n - k + 1.
%F A214661 T(n,k) = A176271(n+k-1, k).
%F A214661 T(n, k) = A214604(n,k) - 2*A025581(n,k).
%F A214661 T(n, k) = 2*A000290(A094727(n,k)) - A214604(n,k).
%F A214661 T(2*n-1, n) = A214675() (main diagonal).
%F A214661 T(n,1) = A002061(n).
%F A214661 T(n,n) = A016754(n-1).
%F A214661 Sum_{k=1..n} T(n, k) = A051673(n) (row sums).
%e A214661 .     Take the first n elements of the n-th diagonal (northwest to
%e A214661 .     southeast) of the triangle on the left side
%e A214661 .     and write this as n-th row on the triangle of the right side.
%e A214661 . 1:                1                    1
%e A214661 . 2:              3   _                  3  9
%e A214661 . 3:            7   9  __                7 15 25
%e A214661 . 4:         13  15  __  __             13 23 35 49
%e A214661 . 5:       21  23  25  __  __           21 33 47 63 ..
%e A214661 . 6:     31  33  35  __  __  __         31 45 61 .. .. ..
%e A214661 . 7:   43  45  47  49  __  __  __       43 59 .. .. .. .. ..
%e A214661 . 8: 57  59  61  63  __  __  __  __     57 .. .. .. .. .. .. .. .
%t A214661 Table[(n+k)^2-3*n-k+1, {n,15}, {k,n}]//Flatten (* _G. C. Greubel_, Mar 10 2024 *)
%o A214661 (Haskell)
%o A214661 import Data.List (transpose)
%o A214661 a214661 n k = a214661_tabl !! (n-1) !! (k-1)
%o A214661 a214661_row n = a214661_tabl !! (n-1)
%o A214661 a214661_tabl = zipWith take [1..] $ transpose $ map reverse a176271_tabl
%o A214661 (Magma) [(n+k)^2-3*n-k+1: k in [1..n], n in [1..15]]; // _G. C. Greubel_, Mar 10 2024
%o A214661 (SageMath) flatten([[(n+k)^2-3*n-k+1 for k in range(1,n+1)] for n in range(1,16)]) # _G. C. Greubel_, Mar 10 2024
%Y A214661 Cf. A000290, A002061, A016754, A025581, A094727, A176271, A214604.
%Y A214661 Cf. A051673 (row sums), A214675 (main diagonal).
%K A214661 nonn,tabl
%O A214661 1,2
%A A214661 _Reinhard Zumkeller_, Jul 25 2012