This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214662 #20 Oct 09 2022 17:18:19 %S A214662 5,2,3,3413,50069,8089,487,2099,10405071317,1274641129,164496735539, %T A214662 3514531963,15624709,23747111,10343539,56429700667, %U A214662 1931869473647715169,2383792821710269,144326697012150473,2053857208873393249,128801386946535261205906957,2298815880166789 %N A214662 Greatest prime divisor of 1 + 2^2 + 3^3 + ... + n^n. %H A214662 Amiram Eldar, <a href="/A214662/b214662.txt">Table of n, a(n) for n = 2..73</a> %F A214662 a(n) = A006530(A001923(n)). %e A214662 a(2) = 5 divides 1 + 2^2 ; %e A214662 a(3) = 2 divides 1 + 2^2 + 3^3 = 32 ; %e A214662 a(4) = 3 divides 1 + 2^2 + 3^3 + 4^4 = 288 = 2^5*3^2 ; %e A214662 a(5) = 3413 divides 1 + 2^2 + 3^3 + 4^4 + 5^5 = 3413. %e A214662 a(13) = 3514531963 divides 1 + 2^2 + 3^3 + ... + 13^13 = 88799 * 3514531963. %p A214662 with (numtheory): %p A214662 s:= proc(n) option remember; `if`(n=1, 1, s(n-1)+n^n) end: %p A214662 a:= n-> max(factorset(s(n))[]): %p A214662 seq (a(n), n=2..23); # _Alois P. Heinz_, Jul 24 2012 %t A214662 s = 1; Table[s = s + n^n; FactorInteger[s][[-1, 1]], {n, 2, 24}] (* _T. D. Noe_, Jul 25 2012 *) %t A214662 Module[{nn=30,lst},lst=Table[n^n,{n,nn}];Table[FactorInteger[Total[Take[lst,k]]][[-1,1]],{k,2,nn}]] (* _Harvey P. Dale_, Oct 09 2022 *) %o A214662 (PARI) a(n) = vecmax(factor(sum(k=1, n, k^k))[,1]); \\ _Michel Marcus_, Feb 09 2020 %o A214662 (Magma) [Max(PrimeDivisors(&+[k^k:k in [1..n]])):n in [2..23]]; // _Marius A. Burtea_, Feb 09 2020 %Y A214662 Cf. A001923, A006530, A073826, A122166, A175232. %K A214662 nonn %O A214662 2,1 %A A214662 _Michel Lagneau_, Jul 24 2012