cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214663 Number of permutations of 1..n for which the partial sums of signed displacements do not exceed 2.

This page as a plain text file.
%I A214663 #57 May 19 2023 11:00:59
%S A214663 1,1,2,6,12,25,57,124,268,588,1285,2801,6118,13362,29168,63685,139057,
%T A214663 303608,662888,1447352,3160121,6899745,15064810,32892270,71816436,
%U A214663 156802881,342360937,747505396,1632091412,3563482500,7780451037,16987713169,37090703118,80983251898
%N A214663 Number of permutations of 1..n for which the partial sums of signed displacements do not exceed 2.
%C A214663 Proof: Consider adding the letter n to a conforming (n-1)-permutation. The possible cases are: 1) (n-1)-perm | n; 2) (n-2)-perm | n | n-1; 3) (n-3)-perm | n | n-1 | n-2; 4) (n-3)-perm | n | n-2 | n-1; 5) (n-3)-perm | n-1 | n | n-2; and 6) (n-4)-perm | n-1 | n-3 | n |n-2; other cases are excluded by the rules. This yields a(n-1)+a(n-2)+3*a(n-3)+a(n-4) as the count of conforming n-permutations with a(0)=1.
%C A214663 Partial sums calculated as follows:
%C A214663   p(i)         3  1  4  2  5
%C A214663   p(i)-i       2 -1  1 -2  0
%C A214663   partial sum  2  1  2  0  0 // max = 2 so counted
%C A214663   p(i)         3  1  4  5  2
%C A214663   p(i)-i       2 -1  1  1 -3
%C A214663   partial sum  2  1  2  3  0 // max = 3 so not counted
%C A214663 Number of permutations of length n>=0 avoiding the partially ordered pattern (POP) {1>4} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is larger than the last element. - _Sergey Kitaev_, Dec 08 2020
%H A214663 Alois P. Heinz, <a href="/A214663/b214663.txt">Table of n, a(n) for n = 0..1000</a>
%H A214663 Alice L. L. Gao and Sergey Kitaev, <a href="https://arxiv.org/abs/1903.08946">On partially ordered patterns of length 4 and 5 in permutations</a>, arXiv:1903.08946 [math.CO], 2019.
%H A214663 Alice L. L. Gao and Sergey Kitaev, <a href="https://doi.org/10.37236/8605">On partially ordered patterns of length 4 and 5 in permutations</a>, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
%H A214663 László Németh and Dragan Stevanović, <a href="https://www.researchgate.net/publication/370765824_Graph_solution_of_system_of_recurrence_equations">Graph solution of system of recurrence equations</a>, Research Gate, 2023. See Table 1 at p. 3.
%H A214663 Kai Ting Keshia Yap, David Wehlau, and Imed Zaguia, <a href="https://arxiv.org/abs/2101.12061">Permutations Avoiding Certain Partially-ordered Patterns</a>, arXiv:2101.12061 [math.CO], 2021.
%H A214663 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,3,1).
%F A214663 G.f.: 1/(1-x-x^2-3*x^3-x^4).
%e A214663 a(4) = 12: 1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 3124, 3142, 3214. The ten 4-permutations starting with 4 or ending with 1, as well as 2413 and 3412, do not comply.
%p A214663 a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <1|3|1|1>>^n)[4, 4]:
%p A214663 seq(a(n), n=0..40);  # _Alois P. Heinz_, Jul 25 2012
%t A214663 CoefficientList[Series[1/(1 - x - x^2 - 3 x^3 - x^4), {x, 0, 37}], x]
%t A214663 LinearRecurrence[{1,1,3,1},{1,1,2,6},40] (* _Harvey P. Dale_, Apr 26 2019 *)
%Y A214663 Column k=3 of A276837.
%K A214663 nonn,easy
%O A214663 0,3
%A A214663 _David Scambler_, Jul 24 2012