A214682 Remove 2's that do not contribute to a factor of 4 from the prime factorization of n.
1, 1, 3, 4, 5, 3, 7, 4, 9, 5, 11, 12, 13, 7, 15, 16, 17, 9, 19, 20, 21, 11, 23, 12, 25, 13, 27, 28, 29, 15, 31, 16, 33, 17, 35, 36, 37, 19, 39, 20, 41, 21, 43, 44, 45, 23, 47, 48, 49, 25, 51, 52, 53, 27, 55, 28, 57, 29
Offset: 1
Examples
For n=8, v_4(8)=1, v_2(8)=3, so a(8)=(8*4^1)/(2^3)=4. For n=12, v_4(12)=1, v_2(12)=2, so a(12)=(12*4^1)/(2^2)=12.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
a[n_] := n/(2^Mod[IntegerExponent[n, 2], 2]); Array[a, 100] (* Amiram Eldar, Dec 09 2020 *)
-
PARI
a(n)=n>>(valuation(n,2)%2) \\ Charles R Greathouse IV, Jul 26 2012
-
Python
def A214682(n): return n>>1 if (~n&n-1).bit_length()&1 else n # Chai Wah Wu, Jan 09 2023
-
SageMath
C = [] for i in [1..n]: C.append(i*4^(Integer(i).valuation(4))/2^(Integer(i).valuation(2)))
Formula
a(n) = (n*4^(v_4(n)))/(2^(v_2(n))) where v_k(n) is the k-adic valuation of n. That is, v_k(n) is the largest power of k, a, such that k^a divides n.
For n odd, a(n)=n since n has no factors of 2 (or 4).
From Peter Munn, Nov 29 2020: (Start)
a(A003159(n)) = n.
a(A036554(n)) = n/2.
Multiplicative with a(2^e) = 2^(2*floor(e/2)), and a(p^e) = p^e for odd primes p. - Amiram Eldar, Dec 09 2020
Sum_{k=1..n} a(k) ~ (5/12) * n^2. - Amiram Eldar, Nov 10 2022
Dirichlet g.f.: zeta(s-1)*(2^s+1)/(2^s+2). - Amiram Eldar, Dec 30 2022
Comments