This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214694 #5 Jul 27 2012 10:36:04 %S A214694 1,1,6,69,929,13692,213402,3456450,57585400,980408857,16982002433, %T A214694 298322996205,5302587890821,95196447689434,1723782813066284, %U A214694 31447947375375315,577509675356805547,10667460556561578780,198074286156460874227,3695152948440645726312 %N A214694 G.f. A(x) satisfies: x = Sum_{n>=1} 1/A(x)^(8*n) * Product_{k=1..n} (1 - 1/A(x)^(2*k-1)). %C A214694 Compare the g.f. to the identity: %C A214694 G(x) = Sum_{n>=0} 1/G(x)^(2*n) * Product_{k=1..n} (1 - 1/G(x)^(2*k-1)) %C A214694 which holds for all power series G(x) such that G(0)=1. %F A214694 G.f. satisfies: 1+x = A(y) where y = x - 6*x^2 + 3*x^3 + 61*x^4 + 15*x^5 - 567*x^6 - 1946*x^7 - 3607*x^8 - 4489*x^9 - 4015*x^10 - 2640*x^11 - 1274*x^12 - 441*x^13 - 104*x^14 - 15*x^15 - x^16, which is the g.f. of row 4 in triangle A214690. %F A214694 G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(n*(n+8)) * Product_{k=1..n} (A(x)^(2*k-1) - 1). %e A214694 G.f.: A(x) = 1 + x + 6*x^2 + 69*x^3 + 929*x^4 + 13692*x^5 + 213402*x^6 +... %e A214694 The g.f. satisfies: %e A214694 x = (A(x)-1)/A(x)^9 + (A(x)-1)*(A(x)^3-1)/A(x)^20 + (A(x)-1)*(A(x)^3-1)*(A(x)^5-1)/A(x)^33 + (A(x)-1)*(A(x)^3-1)*(A(x)^5-1)*(A(x)^7-1)/A(x)^48 + %e A214694 (A(x)-1)*(A(x)^3-1)*(A(x)^5-1)*(A(x)^7-1)*(A(x)^9-1)/A(x)^65 +... %o A214694 (PARI) {a(n)=if(n<0, 0, polcoeff(1 + serreverse(x - 6*x^2 + 3*x^3 + 61*x^4 + 15*x^5 - 567*x^6 - 1946*x^7 - 3607*x^8 - 4489*x^9 - 4015*x^10 - 2640*x^11 - %o A214694 1274*x^12 - 441*x^13 - 104*x^14 - 15*x^15 - x^16 +x^2*O(x^n)), n))} %o A214694 (PARI) {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-polcoeff(sum(m=1, #A, 1/Ser(A)^(8*m)*prod(k=1, m, 1-1/Ser(A)^(2*k-1))), #A-1)); A[n+1]} %o A214694 for(n=0, 25, print1(a(n), ", ")) %Y A214694 Cf. A214690, A214692, A214693, A214695, A181998 (variant). %K A214694 nonn %O A214694 0,3 %A A214694 _Paul D. Hanna_, Jul 26 2012