This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214703 #21 Jul 21 2025 00:43:47 %S A214703 2,3,5,23,53,223,233,353,523,2333,3253,3323,3533,5233,5323,5333,23333, %T A214703 25253,25523,32233,32323,32353,32533,33223,33353,33533,35323,35353, %U A214703 35533,52223,52253,52553,53233,53323,53353,55333,222323,222533,222553,223253,225223 %N A214703 Primes having only {2, 3, 5} as digits. %C A214703 The digits are prime numbers excluding 7. %H A214703 Michael S. Branicky, <a href="/A214703/b214703.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Vincenzo Librandi) %H A214703 <a href="/index/Pri#PrimesWithDigits">Index to entries for primes with digits in a given set</a> %t A214703 Flatten[Table[Select[FromDigits/@Tuples[{2,3,5},n],PrimeQ],{n,7}]] %o A214703 (Magma) [p: p in PrimesUpTo(300000) | Set(Intseq(p)) subset [2,3,5]]; %o A214703 (Python) %o A214703 from sympy import isprime %o A214703 from itertools import count, islice, product %o A214703 def agen(): yield from (k for d in count(1) for k in (int("".join(p)) for p in product("235", repeat=d)) if isprime(k)) %o A214703 print(list(islice(agen(), 41))) # _Michael S. Branicky_, Dec 04 2022 %Y A214703 Subsequence of A019546. %Y A214703 Cf. A087363 (primes with only prime digits excluding 2). %K A214703 nonn,base,easy %O A214703 1,1 %A A214703 _Vincenzo Librandi_, Jul 28 2012