A214720 Least m>0 such that n^2-m and n-m are relatively prime.
2, 1, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2
Offset: 1
Examples
a(12) = 5 because of the following: gcd(144-1,11) > 1, gcd(144-2,10) > 1 , gcd(144-3,9) > 1, gcd(144-4,8) >1, gcd(144-5,7) = 1.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A214720 := proc(n) for m from 1 do if igcd(n^2-m,n-m) =1 then return m; end if; end do: end proc: # R. J. Mathar, Mar 30 2014
-
Mathematica
Table[m = 1; While[GCD[5^n - m, n - m] != 1, m++]; m, {n, 1, 140}]