cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214726 Decimal expansion of the perimeter of Cairo and Prismatic tiles.

This page as a plain text file.
%I A214726 #46 Jul 14 2024 17:59:11
%S A214726 3,8,6,3,7,0,3,3,0,5,1,5,6,2,7,3,1,4,6,9,9,8,9,7,2,7,9,8,9,1,5,5,8,9,
%T A214726 4,7,0,5,3,5,6,1,9,3,5,6,0,3,3,6,1,8,2,0,1,6,0,9,3,7,2,3,0,5,2,4,1,6,
%U A214726 9,2,8,5,5,9,1,9,4,2,2,0,6,5,3,9,0,2,4,6,9,6,7,4,3,2,2,8,1,8,0,7,5,5
%N A214726 Decimal expansion of the perimeter of Cairo and Prismatic tiles.
%C A214726 An algebraic integer with degree 4 and minimal polynomial x^4 - 16x^2 + 16. - _Charles R Greathouse IV_, Apr 21 2016
%C A214726 Length of the longest diagonal in a regular 12-gon with unit side. - _Mohammed Yaseen_, Dec 13 2020
%H A214726 Paolo Xausa, <a href="/A214726/b214726.txt">Table of n, a(n) for n = 1..10000</a>
%H A214726 Ping Ngai Chung, Miguel A. Fernandez, Yifei Li, Michael Mara, Frank Morgan, Isamar Rosa Plata, Niralee Shah, Luis Sordo Vieira, and Elena Wikner, <a href="https://www.ams.org/journals/notices/201205/rtx120500632p.pdf">Isoperimetric Pentagonal Tilings</a>, Not. AMS, Vol. 59, No. 5 (May 2012) pp. 632-640; <a href="https://arxiv.org/abs/1111.6161">arXiv preprint</a>, arXiv:1111.6161 [math.MG], 2011.
%F A214726 Equals 2*(sqrt(2+sqrt(3))).
%F A214726 Equals csc(Pi/12). - _Amiram Eldar_, May 28 2021
%F A214726 Equals sqrt(2) + sqrt(6). - _Vaclav Kotesovec_, May 28 2021
%F A214726 Equals Product_{k>=1} (25 - 144*k^2)/(100 - 144*k^2). - _Antonio GraciĆ” Llorente_, Jul 13 2024
%F A214726 Equals 4 * A019884. - _Alois P. Heinz_, Jul 14 2024
%e A214726 3.8637033051562731469989727989....
%t A214726 First[RealDigits[Csc[Pi/12],10,100]] (* _Paolo Xausa_, Oct 19 2023 *)
%o A214726 (PARI) 2*sqrt(2+sqrt(3)) \\ _Charles R Greathouse IV_, Apr 21 2016
%Y A214726 Cf. A002193, A002194, A019884.
%K A214726 nonn,cons,easy
%O A214726 1,1
%A A214726 _Jonathan Vos Post_, Jul 26 2012
%E A214726 a(100) corrected by _Georg Fischer_, Jul 12 2021