This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214754 #21 Jun 15 2025 20:55:38 %S A214754 23,29,31,47,59,61,71,79,109,113,127,151,157,167,179,191,223,229,233, %T A214754 239,241,251,271,283,317,349,359,367,373,379,383,431,433,439,457,463, %U A214754 467,479,487,491,499,503,509,541,563,599,607,631,701,719,727,733,743,751,757 %N A214754 Primes that can be written in binary representation as a concatenation of odd primes. %C A214754 Subsequence of A090423. %H A214754 David Radcliffe, <a href="/A214754/b214754.txt">Table of n, a(n) for n = 1..10000</a> %e A214754 31 is 11111 in binary, 11 is 3 in decimal, 111 is 7, partition exists: 11_111, so 31 is in the sequence. %o A214754 (Python) %o A214754 # oddPrimes = [3, ... , 757] %o A214754 def tryPartitioning(binString): # First digit is not 0 %o A214754 if binString=='10': %o A214754 return 0 %o A214754 l = len(binString) %o A214754 for t in range(2, l-1): %o A214754 substr1 = binString[:t] %o A214754 if (int('0b'+substr1,2) in oddPrimes) or (t>=4 and tryPartitioning(substr1)): %o A214754 substr2 = binString[t:] %o A214754 if substr2[0]!='0': %o A214754 if (int('0b'+substr2,2) in oddPrimes) or (l-t>=4 and tryPartitioning(substr2)): %o A214754 return 1 %o A214754 return 0 %o A214754 for p in oddPrimes: %o A214754 if tryPartitioning(bin(p)[2:]): %o A214754 print(p, end=', ') %Y A214754 Cf. A090423. %K A214754 nonn,base %O A214754 1,1 %A A214754 _Alex Ratushnyak_, Aug 03 2012