This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214755 #19 Jun 06 2025 00:29:14 %S A214755 37,53,73,113,137,173,193,197,233,293,311,313,317,331,337,347,353,359, %T A214755 367,373,379,383,389,397,433,523,541,547,557,571,577,593,613,617,673, %U A214755 677,719,733,743,757,761,773,797,977,1013,1033,1093,1097,1117,1123,1129,1153 %N A214755 Primes formed by concatenating odd primes. %C A214755 Subsequence of A019549. %H A214755 David Radcliffe, <a href="/A214755/b214755.txt">Table of n, a(n) for n = 1..10000</a> %o A214755 (Python) %o A214755 from sympy import primerange %o A214755 oddPrimes = list(primerange(3, 1154)) %o A214755 def tryPartitioning(binString): # First digit is not 0 %o A214755 l = len(binString) %o A214755 for t in range(1, l): %o A214755 substr1 = binString[:t] %o A214755 if (int(substr1) in oddPrimes) or (t>=2 and tryPartitioning(substr1)): %o A214755 substr2 = binString[t:] %o A214755 if substr2[0]!='0': %o A214755 if (int(substr2) in oddPrimes) or (l-t>=2 and tryPartitioning(substr2)): %o A214755 return 1 %o A214755 return 0 %o A214755 for p in oddPrimes: %o A214755 if tryPartitioning(str(p)): %o A214755 print(p, end=', ') %Y A214755 Cf. A019549, A214754. %K A214755 nonn,base %O A214755 1,1 %A A214755 _Alex Ratushnyak_, Aug 03 2012