This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214764 #7 Nov 12 2016 04:33:11 %S A214764 1,2,10,60,390,2660,18772,138984,1107686,9576100,87944188,830857464, %T A214764 7876505340,73967614584,685644645896,6289047266480,57465415636166, %U A214764 528315307772004,4947263762389484,47785581838822232,480797992896880788,5058812497153271912 %N A214764 G.f. satisfies: A(x) = 1/A(-x*A(x)^4). %C A214764 Compare to: W(x) = 1/W(-x*W(x)^4) when W(x) = Sum_{n>=0} (2*n+1)^(n-1)*x^n/n!. %C A214764 Compare to: B(x) = 1/B(-x*B(x)^4) when B(x) = 1/(1-8*x)^(1/4) = g.f. of A004981. %C A214764 An infinite number of functions G(x) satisfy (*) G(x) = 1/G(-x*G(x)^4); for example, (*) is satisfied by G(x) = W(m*x), where W(x) = Sum_{n>=0} (2*n+1)^(n-1)*x^n/n!. %F A214764 The g.f. of this sequence is the limit of the recurrence: %F A214764 (*) G_{n+1}(x) = (G_n(x) + 1/G_n(-x*G_n(x)^4))/2 starting at G_0(x) = 1+2*x. %e A214764 G.f.: A(x) = 1 + 2*x + 10*x^2 + 60*x^3 + 390*x^4 + 2660*x^5 + 18772*x^6 +... %e A214764 A(x)^4 = 1 + 8*x + 64*x^2 + 512*x^3 + 4096*x^4 + 32800*x^5 + 263168*x^6 +... %o A214764 (PARI) {a(n)=local(A=1+2*x);for(i=0,n,A=(A+1/subst(A,x,-x*A^4+x*O(x^n)))/2);polcoeff(A,n)} %o A214764 for(n=0,31,print1(a(n),", ")) %Y A214764 Cf. A214761, A214762, A214763, A214765, A214766, A214767, A214768, A214769. %K A214764 nonn %O A214764 0,2 %A A214764 _Paul D. Hanna_, Jul 29 2012