This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214767 #6 Aug 22 2024 18:30:44 %S A214767 1,2,16,144,1280,12416,156288,2445952,39005696,569584128,7551139840, %T A214767 94905663488,1200235880448,15657039026176,204235121909760, %U A214767 2589347043356672,34080849916796928,554466780012625920,11679936697324273664,269604415927633805312,6025264829519275556864 %N A214767 G.f. satisfies: A(x) = 1/A(-x*A(x)^7). %C A214767 Compare g.f. to: G(x) = 1/G(-x*G(x)^7) when G(x) = 1 + x*G(x)^4 (A002293). %C A214767 An infinite number of functions G(x) satisfy (*) G(x) = 1/G(-x*G(x)^7); for example, (*) is satisfied by G(x) = F(m*x) = 1 + m*x*F(m*x)^4 for all m, where F(x) is the g.f. of A002293. %F A214767 The g.f. of this sequence is the limit of the recurrence: %F A214767 (*) G_{n+1}(x) = (G_n(x) + 1/G_n(-x*G_n(x)^7))/2 starting at G_0(x) = 1+2*x. %e A214767 G.f.: A(x) = 1 + 2*x + 16*x^2 + 144*x^3 + 1280*x^4 + 12416*x^5 + 156288*x^6 +... %e A214767 A(x)^4 = 1 + 8*x + 88*x^2 + 992*x^3 + 10896*x^4 + 121600*x^5 + 1492480*x^6 +... %e A214767 A(x)^7 = 1 + 14*x + 196*x^2 + 2632*x^3 + 33712*x^4 + 424032*x^5 + 5484864*x^6 +... %o A214767 (PARI) {a(n)=local(A=1+2*x);for(i=0,n,A=(A+1/subst(A,x,-x*A^7+x*O(x^n)))/2);polcoeff(A,n)} %o A214767 for(n=0,31,print1(a(n),", ")) %Y A214767 Cf. A214761, A214762, A214763, A214764, A214765, A214766, A214768, A214769. %K A214767 nonn %O A214767 0,2 %A A214767 _Paul D. Hanna_, Jul 29 2012