This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214775 #40 Mar 30 2023 11:03:08 %S A214775 1,1,1,2,6,2,5,25,25,5,14,98,174,98,14,42,378,962,962,378,42,132,1452, %T A214775 4804,7020,4804,1452,132,429,5577,22689,43573,43573,22689,5577,429, %U A214775 1430,21450,103510,245962,325590,245962,103510,21450,1430 %N A214775 Number T(n,k) of solid standard Young tableaux of shape [[n,k],[n-k]]; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %C A214775 T(n,k) is odd if and only if n = 2^i-1 for i in {0, 1, 2, ... } = A001477. %H A214775 Alois P. Heinz, <a href="/A214775/b214775.txt">Rows n = 0..140, flattened</a> %H A214775 S. B. Ekhad, D. Zeilberger, <a href="https://arxiv.org/abs/1202.6229">Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux</a>, arXiv:1202.6229v1 [math.CO], 2012 %H A214775 Wikipedia, <a href="https://en.wikipedia.org/wiki/Young_tableau">Young tableau</a> %e A214775 Triangle T(n,k) begins: %e A214775 1; %e A214775 1, 1; %e A214775 2, 6, 2; %e A214775 5, 25, 25, 5; %e A214775 14, 98, 174, 98, 14; %e A214775 42, 378, 962, 962, 378, 42; %e A214775 132, 1452, 4804, 7020, 4804, 1452, 132; %e A214775 ... %p A214775 b:= proc(x, y, z) option remember; `if`(z>y, b(x, z, y), %p A214775 `if`({x, y, z}={0}, 1, `if`(x>y and x>z, b(x-1, y, z), 0)+ %p A214775 `if`(y>0, b(x, y-1, z), 0)+ `if`(z>0, b(x, y, z-1), 0))) %p A214775 end: %p A214775 T:= (n, k)-> b(n, k, n-k): %p A214775 seq(seq(T(n, k), k=0..n), n=0..10); %t A214775 b[x_, y_, z_] := b[x, y, z] = If[z>y, b[x, z, y], If[Union[{x, y, z}] == {0}, 1, If[x>y && x>z, b[x-1, y, z], 0] + If[y>0, b[x, y-1, z], 0] + If[z>0, b[x, y, z-1], 0]]]; T[n_, k_] := b[n, k, n-k]; Table[T[n, k] , {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jan 15 2014, translated from Maple *) %o A214775 (Sage) %o A214775 @CachedFunction %o A214775 def B(x, y, z) : %o A214775 if z > y : return B(x, z, y) %o A214775 if x==y and y==z and z==0 : return 1 %o A214775 a = B(x-1, y, z) if x>y and x>z else 0 %o A214775 b = B(x, y-1, z) if y>0 else 0 %o A214775 c = B(x, y, z-1) if z>0 else 0 %o A214775 return a + b + c %o A214775 T = lambda n, k: B(n, k, n-k) %o A214775 [[T(n, k) for k in (0..n)] for n in (0..10)] %o A214775 # After Maple code of Alois P. Heinz. _Peter Luschny_, Jul 30 2012 %Y A214775 Columns 0-5 give: A000108, A214955, A215298, A215299, A215300, A215301. %Y A214775 Row sums give: A215002. %Y A214775 Central row elements give: A214801. %K A214775 nonn,tabl %O A214775 0,4 %A A214775 _Alois P. Heinz_, Jul 28 2012