cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214818 Number of genus 3 rooted hypermaps with n darts.

This page as a plain text file.
%I A214818 #56 Aug 23 2022 14:04:22
%S A214818 0,0,0,0,0,0,180,9132,268980,6010220,112868844,1877530740,28540603884,
%T A214818 404562365316,5422718644920,69428442576136,855504181649448,
%U A214818 10204459810035768,118364711625485256,1340006035830921720,14850353930248138104,161502853638370415864,1727146533728893094604
%N A214818 Number of genus 3 rooted hypermaps with n darts.
%H A214818 Gheorghe Coserea, <a href="/A214818/b214818.txt">Table of n, a(n) for n = 1..107</a> (corrected by _Georg Fischer_, Jan 20 2019)
%H A214818 Mednykh, A.; Nedela, R. <a href="https://doi.org/10.1007/s10958-017-3555-5">Recent progress in enumeration of hypermaps</a>,  J. Math. Sci., New York 226, No. 5, 635-654 (2017) and Zap. Nauchn. Semin. POMI 446, 139-164 (2016), table 5
%H A214818 Timothy R. Walsh, <a href="http://www.info2.uqam.ca/~walsh_t/papers/GENERATING NONISOMORPHIC.pdf">Space-Efficient Generation of Nonisomorphic Maps and Hypermaps</a>
%H A214818 Timothy R. Walsh, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Walsh/walsh3.html">Space-Efficient Generation of Nonisomorphic Maps and Hypermaps</a>, J. Int. Seq. 18 (2015) # 15.4.3.
%H A214818 Peter G. Zograf, <a href="https://doi.org/10.1093/imrn/rnv077">Enumeration of Grothendieck's Dessins and KP Hierarchy</a>, International Mathematics Research Notices, Volume 2015, Issue 24, 1 January 2015, 13533-13544.
%H A214818 Peter G. Zograf, <a href="https://arxiv.org/abs/1312.2538">Enumeration of Grothendieck's Dessins and KP Hierarchy</a>, arXiv:1312.2538 [math.CO], 2014.
%F A214818 G.f.: y*(y - 1)^7*(5*y^9 - 60*y^8 + 675*y^7 - 2947*y^6 + 10005*y^5 - 20235*y^4 + 28297*y^3 - 23937*y^2 + 11418*y - 1781)/(2*(y - 2)^12*(y + 1)^9), where y = C(2*x), C being the g.f. for A000108. - _Gheorghe Coserea_, Nov 12 2018
%t A214818 DeleteCases[CoefficientList[Series[# (# - 1)^7*(5 #^9 - 60 #^8 + 675 #^7 - 2947 #^6 + 10005 #^5 - 20235 #^4 + 28297 #^3 - 23937 #^2 + 11418 # - 1781)/(2 (# - 2)^12*(# + 1)^9) &[(1 - Sqrt[1 - 8 x])/(4 x)], {x, 0, 23}], x], 0] (* _Michael De Vlieger_, Nov 26 2018 *)
%o A214818 (PARI)
%o A214818 seq(N) = {
%o A214818   my(x='x+O('x^(N+2)), y=(1-sqrt(1-8*x))/(4*x));
%o A214818   Vec(y*(y - 1)^7*(5*y^9 - 60*y^8 + 675*y^7 - 2947*y^6 + 10005*y^5 - 20235*y^4 + 28297*y^3 - 23937*y^2 + 11418*y - 1781)/(2*(y - 2)^12*(y + 1)^9));
%o A214818 };
%o A214818 seq(18) \\ _Gheorghe Coserea_, Nov 12 2018
%Y A214818 Cf. A000108, A000257, A118093, A214817, A003319.
%K A214818 nonn
%O A214818 1,7
%A A214818 _N. J. A. Sloane_, Aug 01 2012
%E A214818 a(13)-a(14) by _Noam Zeilberger_, Sep 16 2018
%E A214818 More terms from _Gheorghe Coserea_, Nov 11 2018