This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214818 #56 Aug 23 2022 14:04:22 %S A214818 0,0,0,0,0,0,180,9132,268980,6010220,112868844,1877530740,28540603884, %T A214818 404562365316,5422718644920,69428442576136,855504181649448, %U A214818 10204459810035768,118364711625485256,1340006035830921720,14850353930248138104,161502853638370415864,1727146533728893094604 %N A214818 Number of genus 3 rooted hypermaps with n darts. %H A214818 Gheorghe Coserea, <a href="/A214818/b214818.txt">Table of n, a(n) for n = 1..107</a> (corrected by _Georg Fischer_, Jan 20 2019) %H A214818 Mednykh, A.; Nedela, R. <a href="https://doi.org/10.1007/s10958-017-3555-5">Recent progress in enumeration of hypermaps</a>, J. Math. Sci., New York 226, No. 5, 635-654 (2017) and Zap. Nauchn. Semin. POMI 446, 139-164 (2016), table 5 %H A214818 Timothy R. Walsh, <a href="http://www.info2.uqam.ca/~walsh_t/papers/GENERATING NONISOMORPHIC.pdf">Space-Efficient Generation of Nonisomorphic Maps and Hypermaps</a> %H A214818 Timothy R. Walsh, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Walsh/walsh3.html">Space-Efficient Generation of Nonisomorphic Maps and Hypermaps</a>, J. Int. Seq. 18 (2015) # 15.4.3. %H A214818 Peter G. Zograf, <a href="https://doi.org/10.1093/imrn/rnv077">Enumeration of Grothendieck's Dessins and KP Hierarchy</a>, International Mathematics Research Notices, Volume 2015, Issue 24, 1 January 2015, 13533-13544. %H A214818 Peter G. Zograf, <a href="https://arxiv.org/abs/1312.2538">Enumeration of Grothendieck's Dessins and KP Hierarchy</a>, arXiv:1312.2538 [math.CO], 2014. %F A214818 G.f.: y*(y - 1)^7*(5*y^9 - 60*y^8 + 675*y^7 - 2947*y^6 + 10005*y^5 - 20235*y^4 + 28297*y^3 - 23937*y^2 + 11418*y - 1781)/(2*(y - 2)^12*(y + 1)^9), where y = C(2*x), C being the g.f. for A000108. - _Gheorghe Coserea_, Nov 12 2018 %t A214818 DeleteCases[CoefficientList[Series[# (# - 1)^7*(5 #^9 - 60 #^8 + 675 #^7 - 2947 #^6 + 10005 #^5 - 20235 #^4 + 28297 #^3 - 23937 #^2 + 11418 # - 1781)/(2 (# - 2)^12*(# + 1)^9) &[(1 - Sqrt[1 - 8 x])/(4 x)], {x, 0, 23}], x], 0] (* _Michael De Vlieger_, Nov 26 2018 *) %o A214818 (PARI) %o A214818 seq(N) = { %o A214818 my(x='x+O('x^(N+2)), y=(1-sqrt(1-8*x))/(4*x)); %o A214818 Vec(y*(y - 1)^7*(5*y^9 - 60*y^8 + 675*y^7 - 2947*y^6 + 10005*y^5 - 20235*y^4 + 28297*y^3 - 23937*y^2 + 11418*y - 1781)/(2*(y - 2)^12*(y + 1)^9)); %o A214818 }; %o A214818 seq(18) \\ _Gheorghe Coserea_, Nov 12 2018 %Y A214818 Cf. A000108, A000257, A118093, A214817, A003319. %K A214818 nonn %O A214818 1,7 %A A214818 _N. J. A. Sloane_, Aug 01 2012 %E A214818 a(13)-a(14) by _Noam Zeilberger_, Sep 16 2018 %E A214818 More terms from _Gheorghe Coserea_, Nov 11 2018