This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214843 #33 Feb 22 2021 12:11:28 %S A214843 1,1,2,6,16,48,152,502,1694,5832,20420,72472,260096,942304,3441584, %T A214843 12658128,46842920,174289108,651610504,2446686568,9222628592, %U A214843 34886505168,132387975040,503857644160,1922782984688,7355686851696,28203617340756,108368274550664 %N A214843 Number of formula representations of n using addition, exponentiation and the constant 1. %H A214843 Alois P. Heinz, <a href="/A214843/b214843.txt">Table of n, a(n) for n = 1..1000</a> %H A214843 Shalosh B. Ekhad, <a href="http://www.math.rutgers.edu/~zeilberg/tokhniot/oArithFormulas3">Everything About Formulas Representing Integers Using Additions and Exponentiation for integers from 1 to 8000</a> %H A214843 Edinah K. Ghang and Doron Zeilberger, <a href="https://arxiv.org/abs/1303.0885">Zeroless Arithmetic: Representing Integers ONLY using ONE</a>, arXiv:1303.0885 [math.CO], 2013. %H A214843 Wikipedia, <a href="https://en.wikipedia.org/wiki/Postfix_notation">Postfix notation</a> %H A214843 <a href="/index/Com#complexity">Index to sequences related to the complexity of n</a> %e A214843 a(1) = 1: 1. %e A214843 a(2) = 1: 11+. %e A214843 a(3) = 2: 111++, 11+1+. %e A214843 a(4) = 6: 1111+++, 111+1++, 11+11++, 111++1+, 11+1+1+, 11+11+^. %e A214843 a(5) = 16: 11111++++, 1111+1+++, 111+11+++, 1111++1++, 111+1+1++, 111+11+^+, 11+111+++, 11+11+1++, 111++11++, 11+1+11++, 1111+++1+, 111+1++1+, 11+11++1+, 111++1+1+, 11+1+1+1+, 11+11+^1+. %e A214843 All formulas are given in postfix (reverse Polish) notation but other notations would give the same results. %p A214843 with(numtheory): %p A214843 a:= proc(n) option remember; `if`(n=1, 1, %p A214843 add(a(i)*a(n-i), i=1..n-1)+ %p A214843 add(a(root(n, p))*a(p), p=divisors(igcd(seq(i[2], %p A214843 i=ifactors(n)[2]))) minus {0, 1})) %p A214843 end: %p A214843 seq(a(n), n=1..40); %t A214843 a[1] = 1; a[n_] := a[n] = Sum[a[i]*a[n-i], {i, 1, n-1}] + Sum[a[n^(1/p)] * a[p], {p, Divisors[GCD @@ FactorInteger[n][[All, 2]]] ~Complement~ {0, 1} } ]; %t A214843 Table[a[n], {n, 1, 40}] (* _Jean-François Alcover_, Nov 06 2017, after _Alois P. Heinz_ *) %Y A214843 Cf. A213924, A214833, A214836. %K A214843 nonn %O A214843 1,3 %A A214843 _Alois P. Heinz_, Mar 08 2013