A214845 Triangle read by rows: T(n,m) =(n/k)^(k-1) mod k, where k is the m-th divisor of n, 1 <= m <= tau(n).
0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 3, 2, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 4, 1, 0, 1, 0, 0, 1, 1, 2, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 4, 3, 8, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 3, 1, 2, 1, 0, 1, 0, 1, 1, 1, 5, 3, 4, 1
Offset: 1
Examples
Triangle begins: 0; 0,1; 0,1; 0,0,1; 0,1; 0,1,1,1; 0,1; 0,0,0,1; 0,0,1; 0,1,1,1; 0,1; 0,0,1,3,2,1; 0,1; 0,1,1,1; 0,1,1,1; 0,0,0,0,1; 0,1; 0,1,0,3,4,1;
Programs
-
Maple
A214845 := proc(n,m) sort(convert(numtheory[divisors](n),list)) ; k := op(m,%) ; modp((n/k)^(k-1),k) ; end proc: for n from 1 to 30 do for m from 1 to numtheory[tau](n) do printf("%d,",A214845(n,m)) ; end do: printf("\n") ; end do: # R. J. Mathar, Apr 17 2013
Comments