This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214853 #29 May 08 2021 08:36:27 %S A214853 0,2,5,13,55 %N A214853 Fibonacci numbers with only one 0 in the binary representation. %C A214853 Conjecture: the sequence is finite. %C A214853 No more terms below 2*10^301. - _Matthew House_, Sep 06 2015 %C A214853 No more terms below 10^162809483. (This number could easily be raised. Of the Fibonacci numbers less than 2^32 -- i.e., F(0) through F(47) -- F(10)=55 is the largest that has only one 0 in its binary representation, and of those not less than 2^32, the smallest one whose 32 least significant bits include fewer than 2 zero bits is Fibonacci(779038816), which exceeds 10^162809483.) - _Jon E. Schoenfield_, Sep 07 2015 %e A214853 55 is 110111 in binary, thus 55 is in the sequence. %t A214853 Select[Fibonacci@ Range[0, 120], Last@ DigitCount[#, 2] == 1 &] (* _Michael De Vlieger_, Sep 07 2015 *) %o A214853 (Python) %o A214853 def count0(x): %o A214853 c = 0 %o A214853 while x: %o A214853 c+= 1 - (x&1) %o A214853 if c>1: %o A214853 return 2 %o A214853 x>>=1 %o A214853 return c %o A214853 prpr, prev = 0,1 %o A214853 TOP = 1<<12 %o A214853 print(0, end=',') %o A214853 for i in range(1,TOP): %o A214853 if count0(prpr)==1: %o A214853 print(prpr, end=',') %o A214853 if (i&4095)==0: %o A214853 print('.', end=',') %o A214853 prpr, prev = prev, prpr+prev %Y A214853 Cf. A004685, A221158. %Y A214853 Intersection of A030130 and A000045. %K A214853 nonn,base,more %O A214853 1,2 %A A214853 _Alex Ratushnyak_, Mar 08 2013