This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214871 #21 Feb 16 2025 08:33:18 %S A214871 1,3,4,6,2,7,11,8,9,12,18,13,5,14,19,27,20,15,16,21,28,38,29,22,10,23, %T A214871 30,39,51,40,31,24,25,32,41,52,66,53,42,33,17,34,43,54,67,83,68,55,44, %U A214871 35,36,45,56,69,84,102,85,70,57,46,26,47,58,71,86,103,123 %N A214871 Natural numbers placed in table T(n,k) layer by layer. The order of placement - T(n,n), T(1,n), T(n,1), T(2,n), T(n,2),...T(n-1,n), T(n,n-1). Table T(n,k) read by antidiagonals. %C A214871 a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers. %C A214871 Layer is pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1). %C A214871 Enumeration table T(n,k) layer by layer. The order of the list: %C A214871 T(1,1)=1; %C A214871 T(2,2), T(1,2), T(2,1); %C A214871 . . . %C A214871 T(n,n), T(1,n), T(n,1), T(2,n), T(n,2),...T(n-1,n), T(n,n-1); %C A214871 . . . %H A214871 Boris Putievskiy, <a href="/A214871/b214871.txt">Rows n = 1..140 of triangle, flattened</a> %H A214871 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [of] Integer Sequences And Pairing Functions</a> arXiv:1212.2732 [math.CO], 2012. %H A214871 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PairingFunction.html">Pairing functions</a> %H A214871 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A214871 As table %F A214871 T(n,k) = (n-1)^2+1, if n=k; %F A214871 T(n,k) = (n-1)^2+2*k+1, if n>k; %F A214871 T(n,k) = (k-1)^2+2*n, if n<k. %F A214871 As linear sequence %F A214871 a(n) = (i-1)^2+1, if i=j; %F A214871 a(n) = (i-1)^2+2*j+1, if i>j; %F A214871 a(n) = (j-1)^2+2*i, if i>j; where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). %e A214871 The start of the sequence as table: %e A214871 1....3...6..11..18..27... %e A214871 4....2...8..13..20..29... %e A214871 7....9...5..15..22..31... %e A214871 12..14..16..10..24..33... %e A214871 19..21..23..25..17..35... %e A214871 28..30..32..34..36..26... %e A214871 . . . %e A214871 The start of the sequence as triangle array read by rows: %e A214871 1; %e A214871 3,4; %e A214871 6,2,7; %e A214871 11,8,9,12; %e A214871 18,13,5,14,19; %e A214871 27,20,15,16,21,28; %e A214871 . . . %o A214871 (Python) %o A214871 t=int((math.sqrt(8*n-7) - 1)/ 2) %o A214871 i=n-t*(t+1)/2 %o A214871 j=(t*t+3*t+4)/2-n %o A214871 if i == j: %o A214871 result=(i-1)**2+1 %o A214871 if i > j: %o A214871 result=(i-1)**2+2*j+1 %o A214871 if i < j: %o A214871 result=(j-1)**2+2*i %Y A214871 Cf. A060734, A060736, A185725, A213921, A213922; table T(n,k) contains: in rows A059100, A087475, A114949, A189833, A114948, A114962; in columns A117950, A117951, A117619, A189834, A189836; the main diagonal is A002522. %K A214871 nonn,tabl %O A214871 1,2 %A A214871 _Boris Putievskiy_, Mar 11 2013