cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214874 Starting with Fibonacci(0), the sum of a(n) successive Fibonacci numbers is prime.

This page as a plain text file.
%I A214874 #18 Nov 22 2024 11:06:39
%S A214874 3,1,1,1,5,1,5,1,5,1,11,13,131,31,65,49,47,13,2231,389,5269,72211,
%T A214874 12587,51193
%N A214874 Starting with Fibonacci(0), the sum of a(n) successive Fibonacci numbers is prime.
%C A214874 a(22), if it exists, is bigger than 60300.
%C A214874 The sequence with corresponding primes begins: 2, 2, 3, 5, 131, 89, 2351, 1597, 42187, 28657, 14855327, 7763811697. The prime corresponding to a(21) = 5269 has 1729 decimal digits.
%e A214874 0+1+1 = 2 is prime, three summands,
%e A214874 2 is prime,
%e A214874 3 is prime,
%e A214874 5 is prime,
%e A214874 8+13+21+34+55 = 131 is prime, five summands,
%e A214874 89 is prime,
%e A214874 144+233+377+610+987 = 2351 is prime, five summands,
%e A214874 1597 is prime.
%o A214874 (Java)
%o A214874 import static java.lang.System.out;
%o A214874 import java.math.BigInteger;
%o A214874 public class A214874 {
%o A214874   public static void main (String[] args) {
%o A214874     long i, n=0;
%o A214874     BigInteger prpr = BigInteger.ZERO;
%o A214874     BigInteger prev = BigInteger.ONE, curr;
%o A214874     while (true) {
%o A214874       BigInteger bsum = BigInteger.ZERO;
%o A214874       for (i=n; ; ++i) {
%o A214874         bsum = bsum.add(prpr);
%o A214874         curr = prev.add(prpr);
%o A214874         prpr = prev;
%o A214874         prev = curr;
%o A214874         if (bsum.isProbablePrime(2)) {
%o A214874                 if (bsum.isProbablePrime(80)) break;
%o A214874                 out.printf("(%d)",i);
%o A214874         }
%o A214874       }
%o A214874       out.printf("%d, ", i+1-n);
%o A214874       n=i+1;
%o A214874     }
%o A214874   }
%o A214874 }
%Y A214874 Cf. A000040, A000045, A073684, A214878.
%K A214874 nonn,hard,more
%O A214874 1,1
%A A214874 _Alex Ratushnyak_, Jul 28 2012
%E A214874 a(22)-a(24) from _Michael S. Branicky_, Nov 21 2024