This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214874 #18 Nov 22 2024 11:06:39 %S A214874 3,1,1,1,5,1,5,1,5,1,11,13,131,31,65,49,47,13,2231,389,5269,72211, %T A214874 12587,51193 %N A214874 Starting with Fibonacci(0), the sum of a(n) successive Fibonacci numbers is prime. %C A214874 a(22), if it exists, is bigger than 60300. %C A214874 The sequence with corresponding primes begins: 2, 2, 3, 5, 131, 89, 2351, 1597, 42187, 28657, 14855327, 7763811697. The prime corresponding to a(21) = 5269 has 1729 decimal digits. %e A214874 0+1+1 = 2 is prime, three summands, %e A214874 2 is prime, %e A214874 3 is prime, %e A214874 5 is prime, %e A214874 8+13+21+34+55 = 131 is prime, five summands, %e A214874 89 is prime, %e A214874 144+233+377+610+987 = 2351 is prime, five summands, %e A214874 1597 is prime. %o A214874 (Java) %o A214874 import static java.lang.System.out; %o A214874 import java.math.BigInteger; %o A214874 public class A214874 { %o A214874 public static void main (String[] args) { %o A214874 long i, n=0; %o A214874 BigInteger prpr = BigInteger.ZERO; %o A214874 BigInteger prev = BigInteger.ONE, curr; %o A214874 while (true) { %o A214874 BigInteger bsum = BigInteger.ZERO; %o A214874 for (i=n; ; ++i) { %o A214874 bsum = bsum.add(prpr); %o A214874 curr = prev.add(prpr); %o A214874 prpr = prev; %o A214874 prev = curr; %o A214874 if (bsum.isProbablePrime(2)) { %o A214874 if (bsum.isProbablePrime(80)) break; %o A214874 out.printf("(%d)",i); %o A214874 } %o A214874 } %o A214874 out.printf("%d, ", i+1-n); %o A214874 n=i+1; %o A214874 } %o A214874 } %o A214874 } %Y A214874 Cf. A000040, A000045, A073684, A214878. %K A214874 nonn,hard,more %O A214874 1,1 %A A214874 _Alex Ratushnyak_, Jul 28 2012 %E A214874 a(22)-a(24) from _Michael S. Branicky_, Nov 21 2024