This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214878 #19 Aug 26 2012 11:27:14 %S A214878 3,2,2,1,1,1,5,1,4,2,4,1,5,1,4,2,4,1,5,7,29,2,37,1,11,163,5,2,4,1,5, %T A214878 73,19,1433,4,13,347,61201,4,47,43,2,41,1,4,2,13,1,131,19,4,5,7,787, %U A214878 173,31,13,1265,4,11,53 %N A214878 Least k such that Fibonacci(n) + Fibonacci(n+1) + ... + Fibonacci(n+k-1) is prime. %C A214878 Next term, if it exists, is bigger than 95000. %e A214878 0+1+1=2, three summands, so a(0)=3, %e A214878 1+1=2, two summands, %e A214878 1+2=3, two summands, %e A214878 2, %e A214878 3, %e A214878 5, %e A214878 8+13+21+34+55=131, five summands, so a(6)=5, and so on. %t A214878 Table[k = n; p = Fibonacci[k]; While[! PrimeQ[p], k++; p = p + Fibonacci[k]]; k - n + 1, {n, 0, 30}] (* _T. D. Noe_, Jul 30 2012 *) %o A214878 (Java) %o A214878 import static java.lang.System.out; %o A214878 import java.math.BigInteger; %o A214878 public class A214878 { %o A214878 public static void main (String[] args) { %o A214878 BigInteger prpr=BigInteger.ZERO, prpr0; %o A214878 BigInteger prev=BigInteger.ONE, prev0, curr, sum, prevSum; %o A214878 long i, n; %o A214878 for (n=0; ; ++n) { %o A214878 prpr0 = prpr; %o A214878 prev0 = prev; %o A214878 sum = BigInteger.ZERO; %o A214878 for (i=n; ; ++i) { %o A214878 sum = sum.add(prpr); %o A214878 if (sum.isProbablePrime(2)) { %o A214878 if (sum.isProbablePrime(80)) break; %o A214878 } %o A214878 curr = prev.add(prpr); %o A214878 prpr = prev; %o A214878 prev = curr; %o A214878 } %o A214878 out.printf("%d, ", i+1-n); %o A214878 prpr = prev0; %o A214878 prev = prev0.add(prpr0); %o A214878 } %o A214878 } %o A214878 } %Y A214878 Cf. A000040, A000045, A214874. %K A214878 nonn,hard,more %O A214878 0,1 %A A214878 _Alex Ratushnyak_, Jul 29 2012 %E A214878 a(37)-a(60) from _T. D. Noe_, Jul 30 2012