This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214879 #16 Aug 13 2021 08:05:50 %S A214879 0,1,2,3,4,5,6,7,9,10,11,12,14,15,16,17,19,20,21,22,23,24,25,26,27,28, %T A214879 30,31,32,33,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,51,52,54,55, %U A214879 56,57,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,75,76 %N A214879 Numbers that cannot be written as sum of the squares of two primes. %C A214879 A045698(a(n)) = 0. %H A214879 Reinhard Zumkeller, <a href="/A214879/b214879.txt">Table of n, a(n) for n = 1..10000</a> %F A214879 a(n) ~ n. - _Charles R Greathouse IV_, Sep 01 2015 %o A214879 (Haskell) %o A214879 import Data.List (elemIndices) %o A214879 a214879 n = a214879_list !! (n-1) %o A214879 a214879_list = elemIndices 0 a045698_list %o A214879 -- _Reinhard Zumkeller_, Jul 29 2012 %o A214879 (PARI) is(n)=forprime(p=2,sqrtint(n), if(isprimepower(n-p^2)==2, return(0))); 1 \\ _Charles R Greathouse IV_, Sep 01 2015 %o A214879 (Python) %o A214879 from sympy import primerange %o A214879 def aupto(limit): %o A214879 primes = list(primerange(2, int((limit-4)**.5)+2)) %o A214879 nums = [p*p + q*q for i, p in enumerate(primes) for q in primes[i:]] %o A214879 return sorted(set(range(limit+1)) - set(k for k in nums if k <= limit)) %o A214879 print(aupto(76)) # _Michael S. Branicky_, Aug 13 2021 %Y A214879 Cf. A045636 (complement). %K A214879 nonn %O A214879 1,3 %A A214879 _Reinhard Zumkeller_, Jul 29 2012