cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214923 Total count of 1's in binary representation of Fibonacci(n) and previous Fibonacci numbers, minus total count of 0's. That is, partial sums of b(n) = -A037861(Fibonacci(n)).

This page as a plain text file.
%I A214923 #10 Jul 30 2012 15:12:23
%S A214923 -1,0,1,1,3,4,2,4,5,3,7,8,4,6,9,7,13,16,12,9,12,10,11,18,14,9,10,14,
%T A214923 17,22,18,19,15,19,20,18,18,21,15,13,18,24,24,27,33,32,43,37,28,31,33,
%U A214923 32,31,29,24,30,34,27,35,35,26,22,32,35,31,37,30,36,19,18
%N A214923 Total count of 1's in binary representation of Fibonacci(n) and previous Fibonacci numbers, minus total count of 0's. That is, partial sums of b(n) = -A037861(Fibonacci(n)).
%C A214923 b(n) = -A037861(Fibonacci(n)) begins: -1, 1, 1, 0, 2, 1, -2, 2, 1, -2, 4, 1, -4, 2, 3, -2, 6, 3, -4, -3, 3, -2, 1, 7, -4, -5, 1, 4, 3, 5, -4, 1, -4, 4, 1, -2, 0.  For example b(6) = -A037861(Fibonacci(6)) = -A037861(8) = -2.
%C A214923 Conjecture: a(n) contains infinitely many positive and infinitely many negative terms.
%H A214923 T. D. Noe, <a href="/A214923/b214923.txt">Table of n, a(n) for n = 0..10000</a>
%t A214923 Accumulate[Table[f = Fibonacci[n]; Count[IntegerDigits[f, 2], 1] - Count[IntegerDigits[f, 2], 0], {n, 0, 100}]] (* _T. D. Noe_, Jul 30 2012 *)
%o A214923 (Java)
%o A214923 import static java.lang.System.out;
%o A214923 import java.math.BigInteger;
%o A214923 public class A214923 {
%o A214923   public static void main (String[] args) {       // 51 minutes
%o A214923     BigInteger prpr = BigInteger.valueOf(0);
%o A214923     BigInteger prev = BigInteger.valueOf(1), curr;
%o A214923     long n, c0=1, c1, sum=0, count0=0, countPos=0, countNeg=0, max=0, min=0, maxAt=0, minAt=0;
%o A214923     for (n=0; n<10000000; ++n) {
%o A214923       c1 = prpr.bitCount();
%o A214923       if (n>0)
%o A214923         c0 = prpr.bitLength() - c1;
%o A214923       sum += c1-c0;
%o A214923       out.printf("%d, ", sum);
%o A214923       if (sum>0) ++countPos; else
%o A214923       if (sum<0) ++countNeg; else
%o A214923                  ++count0;
%o A214923       if (sum>max) { max=sum; maxAt=n; }
%o A214923       if (sum<min) { min=sum; minAt=n; }
%o A214923       curr = prev.add(prpr);
%o A214923       prpr = prev;
%o A214923       prev = curr;
%o A214923       //if ((n&65535)==0)
%o A214923       //  out.printf("%d  %d %d %d  %d %d  %d %d\n", n,
%o A214923       //      countPos, countNeg, count0, max, maxAt, min, minAt);
%o A214923     }
%o A214923     out.printf("\n\n%d  %d %d %d  %d %d  %d %d\n", n,
%o A214923             countPos, countNeg, count0, max, maxAt, min, minAt);
%o A214923     /// 10000000  6882307 3117686 7  3743769 5463976  -2088795 7963846
%o A214923   }
%o A214923 }
%Y A214923 Cf. A000045, A037861.
%K A214923 sign,base,easy
%O A214923 0,5
%A A214923 _Alex Ratushnyak_, Jul 29 2012