This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214923 #10 Jul 30 2012 15:12:23 %S A214923 -1,0,1,1,3,4,2,4,5,3,7,8,4,6,9,7,13,16,12,9,12,10,11,18,14,9,10,14, %T A214923 17,22,18,19,15,19,20,18,18,21,15,13,18,24,24,27,33,32,43,37,28,31,33, %U A214923 32,31,29,24,30,34,27,35,35,26,22,32,35,31,37,30,36,19,18 %N A214923 Total count of 1's in binary representation of Fibonacci(n) and previous Fibonacci numbers, minus total count of 0's. That is, partial sums of b(n) = -A037861(Fibonacci(n)). %C A214923 b(n) = -A037861(Fibonacci(n)) begins: -1, 1, 1, 0, 2, 1, -2, 2, 1, -2, 4, 1, -4, 2, 3, -2, 6, 3, -4, -3, 3, -2, 1, 7, -4, -5, 1, 4, 3, 5, -4, 1, -4, 4, 1, -2, 0. For example b(6) = -A037861(Fibonacci(6)) = -A037861(8) = -2. %C A214923 Conjecture: a(n) contains infinitely many positive and infinitely many negative terms. %H A214923 T. D. Noe, <a href="/A214923/b214923.txt">Table of n, a(n) for n = 0..10000</a> %t A214923 Accumulate[Table[f = Fibonacci[n]; Count[IntegerDigits[f, 2], 1] - Count[IntegerDigits[f, 2], 0], {n, 0, 100}]] (* _T. D. Noe_, Jul 30 2012 *) %o A214923 (Java) %o A214923 import static java.lang.System.out; %o A214923 import java.math.BigInteger; %o A214923 public class A214923 { %o A214923 public static void main (String[] args) { // 51 minutes %o A214923 BigInteger prpr = BigInteger.valueOf(0); %o A214923 BigInteger prev = BigInteger.valueOf(1), curr; %o A214923 long n, c0=1, c1, sum=0, count0=0, countPos=0, countNeg=0, max=0, min=0, maxAt=0, minAt=0; %o A214923 for (n=0; n<10000000; ++n) { %o A214923 c1 = prpr.bitCount(); %o A214923 if (n>0) %o A214923 c0 = prpr.bitLength() - c1; %o A214923 sum += c1-c0; %o A214923 out.printf("%d, ", sum); %o A214923 if (sum>0) ++countPos; else %o A214923 if (sum<0) ++countNeg; else %o A214923 ++count0; %o A214923 if (sum>max) { max=sum; maxAt=n; } %o A214923 if (sum<min) { min=sum; minAt=n; } %o A214923 curr = prev.add(prpr); %o A214923 prpr = prev; %o A214923 prev = curr; %o A214923 //if ((n&65535)==0) %o A214923 // out.printf("%d %d %d %d %d %d %d %d\n", n, %o A214923 // countPos, countNeg, count0, max, maxAt, min, minAt); %o A214923 } %o A214923 out.printf("\n\n%d %d %d %d %d %d %d %d\n", n, %o A214923 countPos, countNeg, count0, max, maxAt, min, minAt); %o A214923 /// 10000000 6882307 3117686 7 3743769 5463976 -2088795 7963846 %o A214923 } %o A214923 } %Y A214923 Cf. A000045, A037861. %K A214923 sign,base,easy %O A214923 0,5 %A A214923 _Alex Ratushnyak_, Jul 29 2012