cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214926 Difference A214925(n) - A214924(n), prime count between Ramanujan primes bounding maximal gap primes.

Original entry on oeis.org

4, 4, 4, 3, 5, 3, 8, 7, 5, 7, 7, 3, 10, 6, 8, 24, 19, 6, 24, 25, 16, 8, 30, 17, 12, 13, 12, 11
Offset: 1

Views

Author

John W. Nicholson, Aug 06 2012

Keywords

Comments

Conjecture: For every n > 0, a(n) > 1.
Let rho(m) = A179196(m), for any n, let m be an integer such that p_(rho(m)) <= p_n and p_(n+1) <= p_(rho(m+1)), then rho(m) <= n < n + 1 <= rho(m + 1), therefore A001223(n) = p_(n+1) - p_n <= p_rho(m+1) - p_rho(m) = A182873(m). For all rho(m) = A179196(m), A001223(rho(m)) < A165959(m). (Comment copied from A001223). John W. Nicholson, Nov 17 2013

Examples

			a(4) = pi(A214757(4)) - pi(A214756(4)) = 10 - 7 = 3
		

Crossrefs

Formula

a(n) = pi(A214757(n)) - pi(A214756(n)).
a(n) = rho(A214757(n)) - rho(A214756(n)).

Extensions

Extension to a(28) added by John W. Nicholson, Nov 11 2013