This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214928 #31 Mar 23 2025 23:33:36 %S A214928 1,2,4,3,5,9,14,7,6,8,12,17,23,20,11,10,13,19,26,34,43,30,27,16,15,18, %T A214928 24,31,39,48,58,53,38,35,22,21,25,33,42,52,63,75,88,69,64,47,44,29,28, %U A214928 32,40,49,59,70,82,95,109,102,81,76,57,54,37,36,41,51,62 %N A214928 A209293 as table read layer by layer clockwise. %C A214928 Permutation of the natural numbers. %C A214928 a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers. %C A214928 Layer is pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1). The order of the list: %C A214928 T(1,1)=1; %C A214928 T(1,2), T(2,2), T(2,1); %C A214928 . . . %C A214928 T(1,n), T(2,n), ... T(n-1,n), T(n,n), T(n,n-1), ... T(n,1); %C A214928 . . . %H A214928 Boris Putievskiy, <a href="/A214928/b214928.txt">Rows n = 1..140 of triangle, flattened</a> %H A214928 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [of] Integer Sequences And Pairing Functions</a> arXiv:1212.2732 [math.CO], 2012. %H A214928 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PairingFunction.html">Pairing functions</a> %H A214928 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A214928 As table %F A214928 T(n,k) = n*n/2+4*(floor((k-1)/2)+1)*n+ceiling((k-1)^2/2), n,k > 0. %F A214928 As linear sequence %F A214928 a(n)= (m1+m2-1)*(m1+m2-2)/2+m1, where m1=floor((i+j)/2) + floor(i/2)*(-1)^(2*i+j-1), m2=int((i+j+1)/2)+int(i/2)*(-1)^(2*i+j-2), where i=min(t; n-(t-1)^2), j=min(t; t^2-n+1), t=floor(sqrt(n-1))+1. %e A214928 The start of the sequence as table: %e A214928 1....2...5...8..13..18... %e A214928 3....4...9..12..19..24... %e A214928 6....7..14..17..26..31... %e A214928 10..11..20..23..34..39... %e A214928 15..16..27..30..43..48... %e A214928 21..22..35..38..53..58... %e A214928 . . . %e A214928 The start of the sequence as triangle array read by rows: %e A214928 1; %e A214928 2,4,3; %e A214928 5,9,14,7,6; %e A214928 8,12,17,23,20,11,10; %e A214928 13,19,26,34,43,30,27,16,15; %e A214928 18,24,31,39,48,58,53,38,35,22,21; %e A214928 . . . %e A214928 Row number r contains 2*r-1 numbers. %o A214928 (Python) %o A214928 t=int((math.sqrt(n-1)))+1 %o A214928 i=min(t,n-(t-1)**2) %o A214928 j=min(t,t**2-n+1) %o A214928 m1=int((i+j)/2)+int(i/2)*(-1)**(2*i+j-1) %o A214928 m2=int((i+j+1)/2)+int(i/2)*(-1)**(2*i+j-2) %o A214928 result=(m1+m2-1)*(m1+m2-2)/2+m1 %Y A214928 Cf. A209293, A209279, A209278, A185180, A060734, A060736; table T(n,k) contains: in rows A000982, A097063; in columns A000217, A000124, A000096, A152948, A034856, A152950, A055998, A000982, A097063. %K A214928 nonn,tabl %O A214928 1,2 %A A214928 _Boris Putievskiy_, Mar 11 2013