This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214938 #27 Jul 18 2018 17:50:18 %S A214938 1,1,1,2,3,7,11,28,46,122,207,562,977,2693,4769,13288,23872,67064, %T A214938 121862,344588,631958,1796518,3319923,9479780,17630692,50532640, %U A214938 94493713,271710662,510468519,1471935235,2776629563,8026070768,15194389388,44015873308,83591476528 %N A214938 Number of Motzkin n-paths avoiding even-numbered steps that are flat steps. %H A214938 Alois P. Heinz, <a href="/A214938/b214938.txt">Table of n, a(n) for n = 0..1000</a> %H A214938 Veronika Irvine, <a href="http://hdl.handle.net/1828/7495">Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns</a>, PhD Dissertation, University of Victoria, 2016. %H A214938 Veronika Irvine, Stephen Melczer, Frank Ruskey, <a href="https://arxiv.org/abs/1804.08725">Vertically constrained Motzkin-like paths inspired by bobbin lace</a>, arXiv:1804.08725 [math.CO], 2018. %F A214938 a(n) = Sum_{k=0..floor(n/4)} C(floor((n+1)/2), (n mod 2) + 2*(floor(n/4) - k)) * A000108(k + floor((n+2)/4)). %F A214938 Let g.f. A(x) = B(x^2) + x*C(x^2), then %F A214938 B(x) = (1/x)*Series_Reversion( x*(1-x)*(1-2*x)^2 / (1-4*x+5*x^2-2*x^3+x^4) ), %F A214938 C(x) = (1/x)*Series_Reversion( x / (1+2*x+3*x^2+2*x^3 + 2*x^6*Catalan(-x^2)^3) ) %F A214938 where Catalan(x) = (1-sqrt(1-4*x))/(2*x). - _Paul D. Hanna_, Aug 03 2012 %F A214938 a(n) ~ c * 6^(n/2+1)/(5*sqrt(5*Pi)*n^(3/2)), where c = 2 * sqrt(3) if n is even and c = 3 * sqrt(2) if n is odd. - _Vaclav Kotesovec_, Nov 07 2013 %e A214938 a(5) = 7: UuFdD, UuDdF, UdUdF UdFuD, FuUdD, FuFdF, FuDuD, showing even-numbered steps in lower case. %p A214938 a:= proc(n) option remember; `if`(n<7, [1, 1, 1, 2, 3, 7, 11][n+1], %p A214938 (4*(n+1)*(5066415*n^3-39734381*n^2+51596519*n-4935351)*a(n-1) %p A214938 +(83427510*n^4-315565444*n^3-532176102*n^2+1458851596*n %p A214938 +157931232)*a(n-2) -(157058865*n^4-1556016371*n^3 %p A214938 +3706209891*n^2+220948511*n-3544991136)*a(n-3) -(107648400*n^4 %p A214938 -766240720*n^3+696027720*n^2+4498794592*n -8240373864)*a(n-4) %p A214938 +8*(n-4)*(25332075*n^3-234136810*n^2+385914455*n+722870772)*a(n-5) %p A214938 -24*(n-5)*(1345605*n^3-3657347*n^2-11033479*n+18898695)*a(n-6) %p A214938 +12*(n-5)*(n-6)*(5066415*n^2-14402306*n-21087469)*a(n-7)) / %p A214938 (8*(n+2)*(n+1)*(1345605*n^2-5002952*n-4935351))) %p A214938 end: %p A214938 seq(a(n), n=0..40); # _Alois P. Heinz_, Nov 02 2013 %t A214938 Table[Sum[Binomial[Floor[(n+1)/2],Mod[n,2]+2*(Floor[n/4]-k)] * CatalanNumber[k+Floor[(n+2)/4]],{k,0,Floor[n/4]}],{n,0,34}] %o A214938 (PARI) /* G.f. A(x) = B(x^2) + x*C(x^2): */ {a(n)=local(A,B,C); %o A214938 B=(1/x)*serreverse(x*(1-x)*(1-2*x)^2/(1-4*x+5*x^2-2*x^3+x^4+x*O(x^n))); %o A214938 C=(1/x)*serreverse(x/(1+2*x+3*x^2+2*x^3+(1-sqrt(1+4*x^2+x*O(x^n)))^3/4)); %o A214938 A=subst(B,x,x^2)+x*subst(C,x,x^2); polcoeff(A,n)} \\ _Paul D. Hanna_, Aug 03 2012 %Y A214938 Cf. A001006, A000108. %K A214938 nonn %O A214938 0,4 %A A214938 _David Scambler_, Jul 30 2012