This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214939 #10 May 20 2021 08:38:28 %S A214939 5,20,80,300,1140,4260,15960,59580,222600,830880,3102120,11578800, %T A214939 43220940,161324400,602159940,2247585300,8389237320,31313155560, %U A214939 116877700500,436250537520 %N A214939 Number of squarefree words of length n in a 5-ary alphabet. %C A214939 All terms are multiples of 5 by symmetry. _Michael S. Branicky_, May 20 2021 %e A214939 Some solutions for n = 6: %e A214939 ..4....2....0....2....3....3....4....4....4....2....0....1....1....0....1....4 %e A214939 ..2....1....4....4....1....2....0....3....0....4....2....0....3....3....0....3 %e A214939 ..4....2....1....2....3....0....1....2....2....2....3....3....1....1....3....4 %e A214939 ..0....4....2....3....4....1....4....1....3....3....0....2....2....2....4....2 %e A214939 ..1....0....4....4....0....2....2....3....4....1....4....1....0....4....0....4 %e A214939 ..0....1....1....2....1....1....0....4....3....3....3....0....3....1....4....1 %o A214939 (Python) %o A214939 from itertools import product %o A214939 def a(n): %o A214939 if n == 1: return 5 %o A214939 squares = ["".join(u) + "".join(u) %o A214939 for r in range(1, n//2 + 1) for u in product("01234", repeat = r)] %o A214939 words = ("0"+"".join(w) for w in product("01234", repeat=n-1)) %o A214939 return 5*sum(all(s not in w for s in squares) for w in words) %o A214939 print([a(n) for n in range(1, 10)]) # _Michael S. Branicky_, May 20 2021 %Y A214939 Column 4 of A214943. %K A214939 nonn %O A214939 1,1 %A A214939 _R. H. Hardin_ Jul 30 2012