This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214940 #10 Jul 22 2025 23:20:35 %S A214940 6,30,150,720,3480,16680,80040,383520,1838160,8807400,42202560, %T A214940 202209720,968880960,4642304520,22243228680,106576361760,510651000360 %N A214940 Number of squarefree words of length n in a 6-ary alphabet. %C A214940 Column 5 of A214943 %e A214940 Some solutions for n=6 %e A214940 ..4....4....4....1....5....5....4....5....2....1....5....4....2....1....4....5 %e A214940 ..0....5....5....4....2....4....1....1....1....3....3....1....4....2....1....2 %e A214940 ..5....3....0....5....3....2....4....4....0....1....4....0....3....0....2....1 %e A214940 ..3....4....3....3....2....5....2....5....5....4....0....3....5....4....4....0 %e A214940 ..5....1....4....5....1....3....3....3....2....5....3....4....0....2....5....5 %e A214940 ..0....0....5....2....3....4....2....5....3....2....4....2....2....4....1....1 %o A214940 (Python) %o A214940 from itertools import product %o A214940 def a(n): %o A214940 if n == 1: return 6 %o A214940 squares = ["".join(u) + "".join(u) %o A214940 for r in range(1, n//2 + 1) for u in product("012345", repeat=r)] %o A214940 words = ("0"+"".join(w) for w in product("012345", repeat=n-1)) %o A214940 return 6*sum(all(s not in w for s in squares) for w in words) %o A214940 print([a(n) for n in range(1, 9)]) # _Michael S. Branicky_, Jun 30 2021 %K A214940 nonn %O A214940 1,1 %A A214940 _R. H. Hardin_ Jul 30 2012