A214944 Number of squarefree words of length 5 in an (n+1)-ary alphabet.
0, 30, 264, 1140, 3480, 8610, 18480, 35784, 64080, 107910, 172920, 265980, 395304, 570570, 803040, 1105680, 1493280, 1982574, 2592360, 3343620, 4259640, 5366130, 6691344, 8266200, 10124400, 12302550, 14840280, 17780364, 21168840, 25055130
Offset: 1
Keywords
Examples
Some solutions for n=2: ..1....2....2....0....1....0....0....0....2....1....2....2....0....2....1....2 ..2....1....1....1....0....1....2....2....1....0....0....0....1....1....2....0 ..0....0....2....2....2....2....1....0....0....2....1....1....0....2....0....2 ..2....2....0....0....1....0....0....1....1....0....2....2....2....0....1....1 ..1....1....2....2....2....1....2....0....2....1....0....1....0....1....0....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = n^5 + n^4 - 2*n^3 - n^2 + n.
Conjectures from Colin Barker, Jul 22 2018: (Start)
G.f.: 6*x^2*(5 + 14*x + x^2) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)
Comments