A214946 Number of squarefree words of length 7 in an (n+1)-ary alphabet.
0, 60, 1848, 15960, 80040, 292740, 868560, 2218608, 5062320, 10575180, 20577480, 37769160, 66015768, 110690580, 179077920, 280842720, 428571360, 638388828, 930657240, 1330760760, 1869981960, 2586474660, 3526338288, 4744798800
Offset: 1
Keywords
Examples
Some solutions for n=2: ..1....0....1....0....2....2....2....0....1....0....2....2....1....2....2....2 ..0....2....2....1....1....0....0....2....0....1....1....0....2....0....1....1 ..2....0....1....0....2....2....1....1....1....0....2....1....0....2....2....0 ..1....1....0....2....0....1....2....2....2....2....0....0....2....1....0....1 ..2....2....1....0....2....2....1....0....1....0....2....2....1....0....1....2 ..0....0....2....1....1....0....0....1....0....1....1....1....0....2....2....0 ..2....2....1....2....2....1....2....2....1....0....0....0....2....0....1....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A214943.
Formula
Empirical: a(n) = n^7 + n^6 - 4*n^5 - 3*n^4 + 5*n^3 + 2*n^2 - 2*n.
Conjectures from Colin Barker, Jul 22 2018: (Start)
G.f.: 12*x^2*(5 + 114*x + 238*x^2 + 62*x^3 + x^4) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
Comments