This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214966 #9 Jul 06 2024 19:04:52 %S A214966 1,3,2,10,9,4,30,29,16,6,82,81,48,22,7,226,225,134,67,28,9,615,614, %T A214966 370,188,86,35,11,1673,1672,1012,517,241,105,41,12,4549,4548,2756, %U A214966 1413,664,295,124,47,14,12366,12365,7498,3847,1814,811,348,143,54 %N A214966 Array T(m,n) = greatest k such that 1/n + ... + 1/(n+k-1) <= m, by rising antidiagonals. %C A214966 Row 1: A136617. %C A214966 Column 1: A115515 = -1 + A002387. %H A214966 Clark Kimberling, <a href="/A214966/b214966.txt">Rising antidiagonals n = 1..60, flattened</a> %e A214966 Northwest corner (the array is read by northeast antidiagonals): %e A214966 1 2 4 6 7 9 %e A214966 3 9 16 22 28 35 %e A214966 10 29 48 67 86 105 %e A214966 30 81 134 188 241 295 %e A214966 82 225 370 517 664 811 %e A214966 226 614 1012 1413 1814 2216 %t A214966 t = Table[1 + Floor[x /. FindRoot[HarmonicNumber[N[x + z, 150]] - HarmonicNumber[N[z - 1, 150]] == m, {x, Floor[-E^bm/2 + (-1 + E^m) z]}, WorkingPrecision -> 100]], {m, 1, #}, {z, 1, #}] &[12] %t A214966 TableForm[t] %t A214966 u = Flatten[Table[t[[i - j]][[j]], {i, 2, 12}, {j, 1, i - 1}]] %t A214966 (* _Peter J. C. Moses_, Aug 29 2012 *) %Y A214966 Cf. A136617, A115515, A002387. %K A214966 nonn,tabl %O A214966 1,2 %A A214966 _Clark Kimberling_, Sep 01 2012